首页> 外文期刊>Signal processing >Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection
【24h】

Facial expression recognition based on improved local binary pattern and class-regularized locality preserving projection

机译:基于改进的局部二值模式和分类规则的局部性保留投影的表情识别

获取原文
获取原文并翻译 | 示例

摘要

This paper provides a novel method for facial expression recognition, which distinguishes itself with the following two main contributions. First, an improved facial feature, called the expression-specific local binary pattern (es-LBP), is presented by emphasizing the partial information of human faces on particular fiducial points. Second, to enhance the connection between facial features and expression classes, class-regularized locality preserving projection (cr-LPP) is proposed, which aims at maximizing the class independence and simultaneously preserving the local feature similarity via dimensionality reduction. Simulation results show that the proposed approach is very effective for facial expression recognition.
机译:本文提供了一种新颖的面部表情识别方法,它通过以下两个主要方面与众不同。首先,通过强调特定基准点上人脸的部分信息,提出了一种改进的面部特征,称为表情特定局部二进制模式(es-LBP)。其次,为了增强面部特征和表情类之间的联系,提出了类规则化的局部性保留投影(cr-LPP),其目的是最大化类的独立性,同时通过降维来保留局部性特征的相似性。仿真结果表明,该方法对人脸表情识别非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号