首页> 外文期刊>Signal processing >Theoretical results for sparse signal recovery with noises using generalized OMP algorithm
【24h】

Theoretical results for sparse signal recovery with noises using generalized OMP algorithm

机译:使用广义OMP算法进行带噪声的稀疏信号恢复的理论结果

获取原文
获取原文并翻译 | 示例

摘要

The generalized Orthogonal Matching Pursuit (gOMP) algorithm generalizes the OMP algorithm by selecting more than one atom in each iteration. Under conventional settings, the gOMP algorithm iterates K loops where K is the sparsity of the sparse signal that is to be recovered. Thus, K is usually unknown beforehand. We propose stopping rules along with sufficient conditions for the gOMP algorithm to recover the whole or a part of the sparse signal support from noisy observations. It is proved that under conditions on restricted isometry constant (RIC) and magnitude of nonzero elements of the sparse signal, the gOMP algorithm will recover the support with given stopping rules under various noisy settings. We also give conditions under which partial support corresponding to components with significant magnitude of the sparse signal can be recovered.
机译:广义正交匹配追踪(gOMP)算法通过在每次迭代中选择多个原子来泛化OMP算法。在常规设置下,gOMP算法会迭代K个循环,其中K是要恢复的稀疏信号的稀疏性。因此,K通常通常是事先未知的。我们提出了停止规则以及gOMP算法的充分条件,以便从嘈杂的观测中恢复全部或部分稀疏信号支持。证明了在受限的等距常数(RIC)和稀疏信号的非零元素幅度的条件下,gOMP算法将在各种噪声设置下以给定的停止规则恢复支持。我们还给出了可以恢复对应于具有稀疏信号幅度很大的分量的部分支持的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号