首页> 外文期刊>Signal processing >Accelerated reweighted nuclear norm minimization algorithm for low rank matrix recovery
【24h】

Accelerated reweighted nuclear norm minimization algorithm for low rank matrix recovery

机译:用于低秩矩阵恢复的加速重加权核范数最小化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose an accelerated reweighted nuclear norm minimization algorithm to recover a low rank matrix. Our approach differs from other iterative reweighted algorithms, as we design an accelerated procedure which makes the objective function descend further at every iteration. The proposed algorithm is the accelerated version of a state-of-the-art algorithm. We provide a new analysis of the original algorithm to derive our own accelerated version, and prove that our algorithm is guaranteed to converge to a stationary point of the reweighted nuclear norm minimization problem. Numerical results show that our algorithm requires distinctly fewer iterations and less computational time than the original one to achieve the same (or very close) accuracy, in some problem instances even require only about 50% computational time of the original one, and is also notably faster than several other state-of-the-art algorithms.
机译:在本文中,我们提出了一种加速的加权核规范最小化算法来恢复低秩矩阵。我们的方法与其他迭代加权算法不同,因为我们设计了一个加速过程,使目标函数在每次迭代时都进一步下降。所提出的算法是最新算法的加速版本。我们提供了对原始算法的新分析,以得出我们自己的加速版本,并证明了我们的算法可以保证收敛到重新加权核规范最小化问题的平稳点。数值结果表明,与原始算法相比,我们的算法所需的迭代次数和计算时间明显少于原始算法,以达到相同(或非常接近)的精度,在某些问题实例中,甚至只需要原始算法的约50%的计算时间,并且值得注意的是,比其他几种最新算法更快。

著录项

  • 来源
    《Signal processing》 |2015年第9期|24-33|共10页
  • 作者

    Xiaofan Lin; Gang Wei;

  • 作者单位

    School of Electronic and Information Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510641, PR China;

    School of Electronic and Information Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510641, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Matrix rank minimization; Matrix completion; Compressed sensing;

    机译:矩阵等级最小化;矩阵完成;压缩感测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号