首页> 外文期刊>Signal processing >Cooperative integrated noise reduction and node-specific direction-of-arrival estimation in a fully connected wireless acoustic sensor network
【24h】

Cooperative integrated noise reduction and node-specific direction-of-arrival estimation in a fully connected wireless acoustic sensor network

机译:完全连接的无线声传感器网络中的协同集成降噪和特定于节点的到达方向估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider cooperative node-specific direction-of-arrival (DOA) estimation in a fully connected wireless acoustic sensor network (WASN). We consider a scenario where each node is equipped with a local microphone array with a known geometry, but where the position of the nodes, as well as their relative geometry and hence the between-nodes signal coherence model is unknown. The local array geometry in each node defines node-specific DOAs with respect to a set of target speech sources and the aim is to estimate these in each node. We assume a noisy environment with localized and/or diffuse noise sources, i.e., the noise can be correlated over the different microphones. A distributed noise reduction algorithm can then be applied as a preprocessing step to denoise all the microphone signals of the WASN, based on the distributed adaptive node-specific signal estimation (DANSE) algorithm. The denoised local microphone signals can then be used in each node to estimate the node-specific DOAs by using a subspace-based DOA estimation, involving a (generalized) eigenvalue decomposition of the local microphone signal correlation matrices. It is seen that the fused microphone signals that are exchanged between the nodes in the DANSE algorithm can also be included in these correlation matrices to obtain improved DOA estimates, leading to a cooperative integrated noise reduction and DOA estimation scheme, where the noise reduction can actually be shortcut. The improved performance achieved by this cooperative DOA estimation is demonstrated by means of numerical simulations for two different subspace-based DOA estimation methods (MUSIC and ESPRIT).
机译:在本文中,我们考虑了完全连接的无线声传感器网络(WASN)中的协作节点特定到达方向(DOA)估计。我们考虑一个场景,其中每个节点都配备了具有已知几何形状的本地麦克风阵列,但是节点的位置以及它们的相对几何形状以及因此节点间信号相干模型是未知的。每个节点中的局部阵列几何形状针对一组目标语音源定义了特定于节点的DOA,目的是在每个节点中估计这些特定的DOA。我们假设噪声环境中存在局部和/或分散的噪声源,即可以在不同的麦克风上关联噪声。然后,可以基于分布式自适应节点特定信号估计(DANSE)算法,将分布式降噪算法用作预处理步骤,以对WASN的所有麦克风信号进行降噪。然后可以通过使用基于子空间的DOA估计在每个节点中使用去噪后的本地麦克风信号来估计特定于节点的DOA,这涉及到本地麦克风信号相关性矩阵的(广义)特征值分解。可以看出,在DANSE算法中在节点之间交换的融合麦克风信号也可以包含在这些相关矩阵中,以获得改进的DOA估计,从而实现了协作的集成降噪和DOA估计方案,其中降噪实际上可以是捷径。通过两种不同的基于子空间的DOA估计方法(MUSIC和ESPRIT)的数值模拟,可以证明通过这种协同DOA估计实现的改进性能。

著录项

  • 来源
    《Signal processing》 |2015年第2期|68-81|共14页
  • 作者单位

    KU Leuven, Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, B-3001 leuven, Belgium;

    KU Leuven, Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, B-3001 leuven, Belgium;

    KU Leuven, Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Kasteelpark Arenberg 10, B-3001 leuven, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wireless acoustic sensor network; Distributed noise reduction; Node-specific DOA estimation; Generalized eigenvalue decomposition;

    机译:无线声传感器网络;分布式降噪;特定于节点的DOA估计;广义特征值分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号