首页> 外文期刊>Signal processing >Classification of reverberant audio signals using clustered ad hoc distributed microphones
【24h】

Classification of reverberant audio signals using clustered ad hoc distributed microphones

机译:使用群集的ad hoc分布式麦克风对混响音频信号进行分类

获取原文
获取原文并翻译 | 示例

摘要

In a real world scenario, the automatic classification of audio signals constitutes a difficult problem. Often, reverberation and interfering sounds reduce the quality of a target source signal. This results in a mismatch between test and training data when a classifier is trained on clean and anechoic data. To classify disturbed signals more accurately we make use of the spatial distribution of microphones from ad hoc microphone arrays. In the proposed algorithm clusters of microphones that either are dominated by one of the sources in an acoustic scenario or contain mainly signal mixtures and reverberation are estimated in the audio feature domain. Information is shared within and in between these clusters to create one feature vector for each cluster to classify the source dominating this cluster. We evaluate the algorithm using simultaneously active sound sources and different ad hoc microphone arrays in simulated reverberant scenarios and multichannel recordings of an ad hoc microphone setup in a real environment. The cluster based classification accuracy is higher than the accuracy based on single microphone signals and allows for a robust classification of simultaneously active sources in reverberant environments.
机译:在现实世界中,音频信号的自动分类构成了一个难题。混响和干扰声音通常会降低目标源信号的质量。当对分类器进行纯净和无回声的数据训练时,这会导致测试数据与训练数据不匹配。为了更准确地对受干扰的信号进行分类,我们利用了自组织麦克风阵列中麦克风的空间分布。在所提出的算法中,在音频特征域中估计了麦克风群集,这些麦克风群集在声学场景中由一个源控制,或者主要包含信号混合和混响。在这些集群内部和之间共享信息,以为每个集群创建一个特征向量,以对主导该集群的源进行分类。我们在模拟混响场景中使用同时有源声源和不同的自组织麦克风阵列以及在实际环境中自组织麦克风设置的多通道录音来评估算法。基于聚类的分类精度高于基于单个麦克风信号的分类精度,并允许在混响环境中同时对有源源进行可靠的分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号