首页> 外文期刊>Signal processing >Sparse Sequential Generalization of K-means for dictionary training on noisy signals
【24h】

Sparse Sequential Generalization of K-means for dictionary training on noisy signals

机译:针对噪声信号的字典训练的K均值的稀疏顺序泛化

获取原文
获取原文并翻译 | 示例

摘要

Noise incursion is an inherent problem in dictionary training on noisy samples. Therefore, enforcing a structural constrain on the dictionary will be useful for a stable dictionary training. Recently, a sparse dictionary with predefined sparsity has been proposed as a structural constraint. However, a fixed sparsity can become too rigid to adapt to the training samples. In order to address this issue, this article proposes a better solution through sparse Sequential Generalization of K-means (SGK). The beauty of the sparse-SGK is that it does not enforce a predefined rigid structure on the dictionary. Instead, a flexible sparse structure automatically emerges out of the training samples depending on the amount of noise. In addition, a variation of sparse-SGK using an orthogonal base dictionary is proposed for a quicker training. The advantages of sparse-SGK are demonstrated via 3-D image denoising. The experimental results confirm that sparse-SGK has better denoising performance and it takes lesser training time.
机译:噪声入侵是字典中对有噪声样本进行训练时的固有问题。因此,在字典上施加结构约束对于稳定的字典训练将很有用。近来,已经提出了具有预定稀疏性的稀疏字典作为结构约束。但是,固定的稀疏性可能变得过于僵化,无法适应训练样本。为了解决此问题,本文提出了一种稀疏的K均值顺序泛化(SGK)更好的解决方案。稀疏SGK的优点在于它不会在字典上强制执行预定义的刚性结构。取而代之的是,一个灵活的稀疏结构会根据噪声量自动从训练样本中出现。另外,提出了使用正交基字典的稀疏SGK的变体,以进行更快的训练。稀疏SGK的优势通过3-D图像降噪得到了证明。实验结果证明,稀疏SGK的去噪性能更好,所需的训练时间更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号