首页> 外文期刊>Signal processing >Bi-component decomposition based hybrid regularization method for partly-textured CS-MR image reconstruction
【24h】

Bi-component decomposition based hybrid regularization method for partly-textured CS-MR image reconstruction

机译:基于双组分分解的混合正则化方法用于部分纹理CS-MR图像重建

获取原文
获取原文并翻译 | 示例

摘要

For compressive sensing magnetic resonance (CS-MR) image reconstruction, it is vital to preserve edges and textures while eliminating aliasing artifacts. The total variation (TV) regularization preserves edges well but causes staircase effect and fails to preserve textures. The high-order regularization can eliminate the staircase effect but causes edge blurring. The nonlocal TV (NLTV) regularization can preserve textures well, but causes extra artifacts and is likely to preserve the texture-like artificial structures caused by aliasing artifacts mistakenly. In this paper, we assume that the image consists of cartoon component and anisotropic component For the cartoon component, we utilize the fractional-order TV regularization to eliminate the staircase effect and avoid edge blurring, and more importantly, we can avoid its disadvantage in texture preservation because there are no textures in the cartoon component. We utilize the NLTV regularization and the shearlet based sparsity regularization for the anisotropic component with piecewise-constant background. Without the effect of intensity inhomogeneity, the NLTV regularization can avoid preserving the texture-like artificial structures while preserving the real edges. The shearlet based sparsity regularization can provide further improvement of the image quality. Numerical experiments demonstrate that our method can eliminate the aliasing artifacts and preserve the edges and textures efficiently.
机译:对于压缩感测磁共振(CS-MR)图像重建,至关重要的是保留边缘和纹理,同时消除混叠伪影。总变化(TV)规范化可以很好地保留边缘,但是会导致阶梯效应,并且不能保留纹理。高阶正则化可以消除阶梯效应,但会导致边缘模糊。非本地电视(NLTV)正则化可以很好地保留纹理,但是会导致多余的伪像,并且很可能保留由错误混叠伪像引起的类似纹理的人工结构。在本文中,我们假设图像由卡通成分和各向异性成分组成。对于卡通成分,我们利用分数阶电视正则化来消除阶梯效应并避免边缘模糊,更重要的是,我们可以避免图像的劣势保留,因为卡通组件中没有纹理。我们利用NLTV正则化和基于小波的稀疏正则化对具有分段恒定背景的各向异性组件进行分析。在没有强度不均匀性影响的情况下,NLTV正则化可以避免保留纹理般的人造结构,同时保留真实边缘。基于小波的稀疏性正则化可以进一步提高图像质量。数值实验表明,我们的方法可以消除混叠伪像,并有效地保留边缘和纹理。

著录项

  • 来源
    《Signal processing》 |2016年第11期|274-290|共17页
  • 作者单位

    School of Science, Nanjing University of Science and Technology, Nanjing 210094, China,School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;

    School of Science, Nanjing University of Science and Technology, Nanjing 210094, China,School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;

    School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MR reconstruction; Bi-component decomposition; Fractional-order total variation; Non-local total variation; Shearlet transform;

    机译:MR重建;双组分分解;分数阶总方差;非本地总变化;剪切波变换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号