首页> 外文期刊>Signal processing >Cross domain boosting for information fusion in heterogeneous sensor-cyber sources
【24h】

Cross domain boosting for information fusion in heterogeneous sensor-cyber sources

机译:跨域提升在异构传感器网络源中的信息融合

获取原文
获取原文并翻译 | 示例

摘要

Image classification is an active research area in signal processing and pattern recognition, with extensively academic and industrial applications. Existing image classification methods usually assumes consistent image source for training and testing which, however, seldom holds for practical applications. We define the scenario of images being captured from diverse sources (e.g. Internet, surveillance cameras, and mobile phones) as heterogeneous sensor-cyber sources (HSCS). We indicate that, information fusion in HSCS is able to make full use of the diversity of images, and thus improves the generalization of classifier. A novel algorithm named Cross Domain Boosting (CD-Boost) is proposed to fuse information in HSCS. Our CD-Boost algorithm has two characteristics, weighted loss objective and manifold smoothness regularization. Concretely, the weighted boosting loss objective can fuse information by assigning different weights to each source sample, and the weights are determined by minimizing the difference between the data distribution in HSCS. Furthermore, when the images are scarce, a manifold smoothness regularization can prevent overfitting and further improve the accuracy. The experimental results on real data demonstrate that our algorithm outperforms existing methods.
机译:图像分类是信号处理和模式识别中一个活跃的研究领域,具有广泛的学术和工业应用。现有的图像分类方法通常假定用于训练和测试的图像源一致,但是在实际应用中很少使用。我们将从各种来源(例如互联网,监控摄像头和移动电话)捕获的图像定义为异构传感器网络来源(HSCS)。我们指出,HSCS中的信息融合能够充分利用图像的多样性,从而提高了分类器的泛化能力。提出了一种新的算法,称为跨域增强(CD-Boost),用于融合HSCS中的信息。我们的CD-Boost算法具有两个特征,加权损失目标和流形平滑度正则化。具体而言,加权助推损耗目标可以通过为每个源样本分配不同的权重来融合信息,并且通过最小化HSCS中数据分布之间的差异来确定权重。此外,当图像不足时,多种平滑度正则化可以防止过度拟合并进一步提高精度。在真实数据上的实验结果表明,我们的算法优于现有方法。

著录项

  • 来源
    《Signal processing》 |2016年第9期|180-186|共7页
  • 作者单位

    College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, China;

    Department of Computer Science, Purdue University, USA;

    College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Information fusion; Heterogeneous sources; CD-Boost;

    机译:信息融合;异构来源;CD升压;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号