首页> 外文期刊>Signal processing >Dynamic texture modeling and synthesis using multi-kernel Gaussian process dynamic model
【24h】

Dynamic texture modeling and synthesis using multi-kernel Gaussian process dynamic model

机译:使用多核高斯过程动力学模型的动态纹理建模和合成

获取原文
获取原文并翻译 | 示例

摘要

Dynamic texture (DT) widely exists in various social video media. Therefore, DT modeling and synthesis plays an important role in social media analyzing and processing. In this paper, we propose a Bayesian-based nonlinear dynamic texture modeling method for dynamic texture synthesis. To capture the non-stationary distribution of DT, we utilize the Gaussian process latent variable model for dimensional reduction. Furthermore, we design a multi-kernel dynamic system for the latent dynamic behavior modeling. In our model, we do not make strong assumption on the nonlinear function. Instead, our model automatically constructs a suitable nonlinear kernel for dynamic modeling and therefore is capable of fitting various types of dynamics. We evaluate the effectiveness our methods on the DynTex database and compared with representative DT synthesis method. Experimental results show that our method can achieve synthesis results with higher visual quality.
机译:动态纹理(DT)广泛存在于各种社交视频媒体中。因此,DT建模和综合在社交媒体分析和处理中起着重要作用。在本文中,我们提出了一种基于贝叶斯的非线性动态纹理建模方法来进行动态纹理合成。为了捕获DT的非平稳分布,我们利用高斯过程潜在变量模型进行降维。此外,我们为潜在的动态行为建模设计了一个多内核动态系统。在我们的模型中,我们没有对非线性函数做出强烈假设。取而代之的是,我们的模型会自动构建适用于动态建模的非线性内核,因此能够拟合各种类型的动力学。我们在DynTex数据库上评估我们的方法的有效性,并与代表性DT合成方法进行了比较。实验结果表明,该方法可以达到较高的视觉效果。

著录项

  • 来源
    《Signal processing》 |2016年第7期|63-71|共9页
  • 作者单位

    School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei, China,Hubei Key Lab of Intelligent Information Processing and Real-time Industrial System, Wuhan, Hubei, China;

    The School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China,Huazhong University of Science and Technology, Research Institute in Shenzhen, China,The Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China;

    The Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA;

    The Institute of Forensic Science, Ministry of Public Security, Beijing, China;

    School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dynamic texture; Synthesis; Gaussian process latent variable model; Multi-kernel learning;

    机译:动态纹理;合成;高斯过程潜变量模型;多核学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号