首页> 外文期刊>Signal processing >Noise adaptive super-resolution from single image via non-local mean and sparse representation
【24h】

Noise adaptive super-resolution from single image via non-local mean and sparse representation

机译:通过非局部均值和稀疏表示实现单幅图像的噪声自适应超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Super-resolution from a single image is a challenging task, more so, in presence of noise with unknown strength. We propose a robust super-resolution algorithm which adapts itself based on the noise-level in the image. We observe that dependency among the gradient values of relatively smoother patches diminishes with increasing strength of noise. Such a dependency is quantified using the ratio of first two singular values computed from local image gradients. The ratio is inversely proportional to the strength of noise. The number of patches with smaller ratio increases with increasing strength of noise. This behavior is used to formulate some parameters that are used in two ways in a sparse-representation based super-resolution approach: i) in computing an adaptive threshold, used in estimating the sparse coefficient vector via the iterative thresholding algorithm, ii) in choosing between the components representing image details and non-local means of similar patches. Furthermore, our approach constructs dictionaries by coarse-to-fine processing of the input image, and hence does not require any external training images. Additionally, an edge preserving constraint helps in better edge retention. As compared to state-of-the-art approaches, our method demonstrates better efficacy for optical and range images under different types and strengths of noise.
机译:在存在强度未知的噪声的情况下,单个图像的超分辨率是一项艰巨的任务。我们提出了一种鲁棒的超分辨率算法,该算法可根据图像中的噪声水平进行自我调整。我们观察到,相对较平滑的补丁的梯度值之间的依赖性随着噪声强度的增加而减小。使用从局部图像梯度计算出的前两个奇异值的比率来量化这种依赖性。该比率与噪声强度成反比。比率较小的贴片数量随着噪声强度的增加而增加。此行为用于制定一些参数,这些参数在基于稀疏表示的超分辨率方法中以两种方式使用:i)计算自适应阈值,用于通过迭代阈值算法估算稀疏系数矢量,ii)选择代表图像细节的组件之间以及类似补丁的非本地方式之间的距离。此外,我们的方法通过对输入图像进行从粗到精的处理来构造字典,因此不需要任何外部训练图像。另外,边缘保留约束有助于更好的边缘保留。与最先进的方法相比,我们的方法证明了在不同类型和强度的噪声下,光学图像和距离图像的效果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号