首页> 外文期刊>Signal processing >Dynamic recovery for block sparse signals
【24h】

Dynamic recovery for block sparse signals

机译:动态恢复块稀疏信号

获取原文
获取原文并翻译 | 示例

摘要

As an important extension to sparsity, Block Structured Sparsity (BSS) has been widely investigated and a large set of algorithms have been designed to recover signals with BSS. In this paper, a dynamic system is proposed to recover signals with BSS, namely D-BSS. Particularly, D-BSS turns to exploiting the dynamic systems governed by an ℓ_(2,1) norm constraint. It can be proved that the equilibrium of D-BSS is equivalent to optimum of traditional BSS algorithms, e.g., Group-lasso. Simulation results are given to illustrate the desirable performance of the D-BSS system, especially the improvement of convergence rate.
机译:作为稀疏性的重要扩展,已对块结构稀疏性(BSS)进行了广泛研究,并设计了许多算法来使用BSS恢复信号。本文提出了一种动态系统来恢复具有BSS的信号,即D-BSS。特别地,D-BSS转向利用受ℓ_(2,1)范数约束控制的动态系统。可以证明D-BSS的均衡与传统BSS算法(例如Group-lasso)的最优等效。仿真结果表明了D-BSS系统的理想性能,尤其是收敛速度的提高。

著录项

  • 来源
    《Signal processing》 |2017年第1期|197-203|共7页
  • 作者单位

    Signal Processing Laboratory, School of Electronic Information, Wuhan University, Wuhan 430072, China;

    Signal Processing Laboratory, School of Electronic Information, Wuhan University, Wuhan 430072, China;

    Signal Processing Laboratory, School of Electronic Information, Wuhan University, Wuhan 430072, China,ECE, Duke University, Durham, NC, United States;

    Signal Processing Laboratory, School of Electronic Information, Wuhan University, Wuhan 430072, China;

    Signal Processing Laboratory, School of Electronic Information, Wuhan University, Wuhan 430072, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sparsity; Block structured sparsity; Dynamic system;

    机译:稀疏性阻止结构性稀疏;动态系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号