首页> 外文期刊>Signal processing >Compressed multi-scale feature fusion network for single image super-resolution
【24h】

Compressed multi-scale feature fusion network for single image super-resolution

机译:用于单图像超分辨率的压缩多尺度特征融合网络

获取原文
获取原文并翻译 | 示例

摘要

HighlightsWe propose a multi-scale feature fusion network (MSFF) with structured sparsity for single image Super-resolution.The MSFF module can discover more possible structure and context information of the input image.Multiple MSFF modules are cascaded to improve the nonlinear representation ability of the network, and more accurate mapping relationships between the LR and HR image scan be learned.AbstractRecently, deep neural networks have made significant breakthroughs in the image super-resolution (SR) field. Most deep learning-based image SR methods learn an end-to-end network to discover the mapping relationship between low-resolution (LR) and high-resolution (HR) images in order to produce visually satisfactory images. However, these methods only extract a single scale feature to learn the mapping relationship, which will miss some critical information that is required for reconstruction. In this paper, we propose a compressed multi-scale feature fusion (MSFF) network for single image SR. Several MSFF modules are used in the network to extract image features at different scales, which enables us to capture more complete structure and context information of the image for better SR quality. Furthermore, to solve the problems of training difficulty and computational expense consumption caused by the use of the multi-scale structure, structure sparse regularization is designed to learn a MSFF network with a sparse structure and obtain a compressed network, which greatly reduces the network parameters and accelerates the speed whilst sustaining the reconstruction quality. Extensive experiments on a variety of images show that the proposed method can achieve more desirable performance in terms of visual quality than several state-of-the-art methods.
机译: 突出显示 我们针对单个图像的超分辨率提出了一种结构化稀疏性的多尺度特征融合网络(MSFF)。 MSFF模块可以发现更多可能的结构并输入图像的上下文信息。 级联多个MSFF模块以提高网络的非线性表示能力,并且可以建立更精确的映射关系。在LR和HR图像之间进行扫描。 摘要 最近,深度神经网络在图像超分辨率(SR)领域取得了重大突破。大多数基于深度学习的图像SR方法学习端到端网络,以发现低分辨率(LR)图像和高分辨率(HR)图像之间的映射关系,以生成视觉上令人满意的图像。但是,这些方法仅提取单个比例尺特征来学习映射关系,这将丢失一些重建所需的关键信息。在本文中,我们提出了一种用于单图像SR的压缩多尺度特征融合(MSFF)网络。网络中使用了多个MSFF模块来提取不同比例的图像特征,这使我们能够捕获更完整的图像结构和上下文信息,从而获得更好的SR质量。此外,为了解决由于使用多尺度结构而导致的训练难度和计算费用消耗的问题,设计了结构稀疏正则化算法来学习具有稀疏结构的MSFF网络并获得压缩网络,从而大大降低了网络参数。并在保持重建质量的同时加快速度。在各种图像上进行的大量实验表明,与几种最先进的方法相比,该方法在视觉质量上可以实现更理想的性能。 < / ce:抽象>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号