首页> 外文期刊>Signal processing >Testing conditional independence to determine shared information in a data/signal fusion process
【24h】

Testing conditional independence to determine shared information in a data/signal fusion process

机译:测试条件独立性以确定数据/信号融合过程中的共享信息

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce hypothesis testing (HT) to validate the conditional independence hypothesis between sets of data, these data being modelled as continuous random variables. This HT is based on a pdf relationship and does not require any normality assumption for the data, for instance. In practice, the HT measures the entropic distance between products of probability densities. The statistics of the entropy estimates, in particular bias, variance and covariance, are extensively discussed in order to normalize the proposed statistical index. The results are discussed for three data and two signal sets, with Gaussian or non-Gaussian statistics. Our HT is also compared to the usual HT used to validate the conditional independence hypothesis.
机译:在本文中,我们引入了假设检验(HT)来验证数据集之间的条件独立性假设,这些数据被建模为连续随机变量。例如,此HT基于pdf关系,并且不需要对数据进行任何正态假设。实际上,HT测量概率密度乘积之间的熵距离。为了规范建议的统计指标,广泛讨论了熵估计的统计量,尤其是偏差,方差和协方差。讨论了具有高斯或非高斯统计量的三个数据和两个信号集的结果。我们还将HT与用于验证条件独立性假设的常用HT进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号