首页> 外文期刊>Signal processing >Dynamic spectrum cartography via canonical polyadic tensor decomposition
【24h】

Dynamic spectrum cartography via canonical polyadic tensor decomposition

机译:通过规范多adiC张量分解的动态频谱制图

获取原文
获取原文并翻译 | 示例

摘要

Spectrum cartography aims at estimating multidimensional radio map from limited geographical observations. Recovering unobserved elements in a radio map, from sequential spectrum observations over a long period in large geographic areas, poses major challenges to real-time requirement and storage. As historical information from dynamic spectrum observations is not well utilized, traditional spectrum cartography methods, which are statically applied on single or multiple time slots, are not well suitable for time-varying scenarios. To address these challenges, we propose two novel radio map reconstruction algorithms based on tensor canonical polyadic decomposition (CPD), called dynamic window size based CPD (DW-CPD) and incremental CPD (I-CPD). The dynamic window size of DW-CPD is derived based on Kruskal condition of tensor CPD, and I-CPD is derived based on an exponentially weighted least squares criterion. We prove that the solution of I-CPD converges to a stationary point of the tensor completion problem, which validates that the proposed 1-CPD is suitable for applications in estimating dynamic CP factor. Simulations results show that DW-CPD and I-CPD based algorithms have similar estimation performance for dynamic spectrum cartography, and are better than the existing methods. Due to the overall advantage of performance, running time and storage, I-CPD based algorithm is preferable for real-time applications.
机译:光谱制图旨在估计来自有限的地理观测多维无线电地图。恢复在电台地图未观察到的元素,来自于大的地理区域长时间连续谱观测,提出对实时性要求和存储的主要挑战。如从动态频谱观测的历史信息没有很好地利用,传统的频谱绘图方法,其在单个或多个时隙静态应用,不能很好地适合于随时间变化的场景。为了应对这些挑战,我们提出了一种基于张量规范polyadic分解(CPD)两个新的电子地图重建算法,称为动态窗口大小基于CPD(DW-CPD)和增量CPD(I-CPD)。 DW-CPD的动态窗口大小基于张量CPD的秩条件导出的,并且I-CPD是基于指数加权最小二乘准则的。我们证明了I-CPD收敛的溶液到固定点的张量完成的问题,验证所提出的1-CPD是适合用于估计动态CP因子的应用程序。仿真结果表明,基于DW-CPD和I-CPD算法有动态频谱制图类似估计性能,而且比现有方法更好。由于业绩的整体优势,运行时间和存储,I-CPD基于算法是最好的实时应用。

著录项

  • 来源
    《Signal processing》 |2021年第11期|108208.1-108208.13|共13页
  • 作者单位

    National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China Chengdu 611731 China;

    National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China Chengdu 611731 China;

    School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu 611731 China;

    National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China Chengdu 611731 China;

    National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China Chengdu 611731 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spectrum cartography; Radio map; Tensor completion; Tensor decomposition;

    机译:光谱制图;无线电地图;张统计学;张量分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号