首页> 外文期刊>Signal processing >K-step analysis of orthogonal greedy algorithms for non-negative sparse representations
【24h】

K-step analysis of orthogonal greedy algorithms for non-negative sparse representations

机译:非负稀疏表示的正交贪婪算法的K步分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an exact recovery analysis of greedy algorithms for non-negative sparse representations. Orthogonal greedy algorithms such as Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS) consist of gradually increasing the solution support and updating the nonzero coefficients in the least squares sense. From a theoretical viewpoint, greedy algorithms have been extensively studied in terms of exact support recovery. In contrast, the exact recovery analysis of their non-negative extensions (NNOMP, NNOLS) remains an open problem. We show that when the mutual coherence μ is lower than 1/2K-1, the iterates of NNOMP / NNOLS coincide with those of OMP / OLS, respectively, the latter being known to reach K-step exact recovery. Our analysis heavily relies on a sign preservation property satisfied by OMP and OLS. This property is of stand-alone interest and constitutes our second important contribution. Finally, we provide an extended discussion of the main challenges of deriving improved analyses for correlated dictionaries.
机译:本文提出了对非负稀疏表示的贪婪算法的精确恢复分析。如正交匹配追踪(OMP)和正交最小二乘(OLS)的正交贪婪算法包括逐渐增加解决方案支持并更新最小二乘意义上的非零系数。从理论上的观点来看,在精确的支持恢复方面已经广泛研究了贪婪算法。相比之下,它们的非负延长的确切恢复分析(NNOMP,NNOL)仍然是一个公开问题。我们表明,当相互相干μ低于1 / 2K-1时,NNOMP / NNOL的迭代分别与OMP / OLS的迭代,后者已知达到K级精确恢复。我们的分析严重依赖于OMM和OLS满足的符号保存财产。这家酒店具有独立兴趣,并构成了我们的第二个重要贡献。最后,我们提供了对来自相关词典的改进分析的主要挑战进行了扩展讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号