首页> 外文期刊>Signal processing >Joint-diagonalizability-constrained multichannel nonnegative matrix factorization based on time-variant multivariate complex sub-Gaussian distribution
【24h】

Joint-diagonalizability-constrained multichannel nonnegative matrix factorization based on time-variant multivariate complex sub-Gaussian distribution

机译:基于时间变量多变量复杂子高斯分布的关节对角度化受约束的多通道非负矩阵分子

获取原文
获取原文并翻译 | 示例

摘要

Multichannel nonnegative matrix factorization (MNMF) is a common blind source separation technique that employs full-rank spatial covariance matrices (SCMs). The full-rank SCMs can simulate reverberant mixing systems where the sources are spatially spread. In conventional MNMF, spectrograms of observed signals are modeled by some types of distribution, e.g., the Gaussian distribution and Student's t distribution. However, MNMF based on the sub-Gaussian distribution has not been proposed because its cost function is difficult to minimize. In this paper, we address the statistical model extension of MNMF to the sub-Gaussian distribution to improve the source separation accuracy. In the proposed method, the generalized Gaussian distribution is utilized as the sub-Gaussian model. Moreover, to design an auxiliary function for the proposed cost function, we introduce the joint-diagonalizability constraint to SCMs similarly to FastMNMF. Two types of update rule for the proposed MNMF are derived on the basis of the majorization-minimization (MM) and majorization-equalization (ME) algorithms. Since the optimization speed of each parameter affects the source separation performance, we experimentally analyze the best combination of MM- and ME-algorithm-based update rules in the proposed method. Experiments of blind source separation reveal that the proposed MNMF based on the sub-Gaussian model can outperform conventional methods.
机译:多通道非负矩阵分解(MNMF)是一种常见的盲源分离技术,其采用全级空间协方差矩阵(SCM)。全级SCM可以模拟混响混合系统,其中源在空间上传播。在传统的MNMF中,观察信号的谱图由某种类型的分布,例如高斯分布和学生的T分布建模。然而,基于亚高斯分布的MNMF尚未提出,因为其成本函数难以最小化。在本文中,我们将MNMF的统计模型延伸解决了子高斯分布,以提高源分离精度。在所提出的方法中,广义高斯分布用作子高斯模型。此外,为了为所提出的成本函数设计辅助功能,我们与FastMnMF类似地向SCM引入关节对角线累积约束。所提出的MNMF的两种更新规则是基于多种化最小化(mm)和多种化均衡(ME)算法的大大变化。由于每个参数的优化速度影响源分离性能,因此我们在所提出的方法中通过实验分析基于MM和ME算法的更新规则的最佳组合。盲源分离的实验表明,基于亚高斯模型的提出的MNMF可以优于常规方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号