首页> 外文期刊>Signal processing >Computation of low-rank tensor approximation under existence constraint via a forward-backward algorithm
【24h】

Computation of low-rank tensor approximation under existence constraint via a forward-backward algorithm

机译:通过前后算法计算存在约束下的低级张量近似的计算

获取原文
获取原文并翻译 | 示例

摘要

The Canonical Polyadic (CP) tensor decomposition has become an attractive mathematical tool in several fields during the last ten years. This decomposition is very powerful for representing and analyzing multidimensional data. The most attractive feature of the CP decomposition is its uniqueness, contrary to rank-revealing matrix decompositions, where the problem of rotational invariance remains. This paper presents the performance analysis of iterative descent algorithms for calculating the CP decomposition of tensors when columns of factor matrices are almost collinear - i.e. swamp problems arise. We propose in this paper a new and efficient proximal algorithm based on the Forward Backward splitting method. More precisely, the existence of the best low-rank tensor approximation is ensured thanks to a coherence constraint implemented via a logarithmic regularized barrier. Computer experiments demonstrate the efficiency and stability of the proposed algorithm in comparison to other iterative algorithms in the literature for the normal case, and also producing significant results even in difficult situations.
机译:规范多adic(CP)张量分解在过去十年中几个领域成为了一个有吸引力的数学工具。这种分解对于代表和分析多维数据非常强大。 CP分解的最具吸引力的特征是其唯一性,与旋转不变性的问题仍然存在相反的矩阵分解。本文介绍了迭代下降算法的性能分析,用于计算因子矩阵柱几乎是共线的时张量的CP分解 - 即出现沼泽问题。我们提出了一种基于前向后分裂方法的新的高效近端算法。更确切地说,由于通过对数正则屏障实现的相干约束,确保了最佳低级张量近似的存在。计算机实验证明了所提出的算法的效率和稳定性与正常情况下的文献中的其他迭代算法相比,并且即使在困难的情况下也产生显着的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号