首页> 外文期刊>Signal processing >Hybrid BM3D and PDE filtering for non-parametric single image denoising
【24h】

Hybrid BM3D and PDE filtering for non-parametric single image denoising

机译:非参数单图像去噪的混合BM3D和PDE过滤

获取原文
获取原文并翻译 | 示例

摘要

The BM3D method achieves excellent denoising performance, but it has artificial effects and bias effects and its performance largely depends on the noise level parameter. To address this, we propose a hybrid BM3D and PDE method for non-parametric single image denoising. First, a non-local Perona-Malik (NLPM) filtering is proposed, and we prove its discontinuity maintaining, mean invariance, convergence, and local continuity. Based on these mathematical properties, an NLPM based noise level estimator (NLPM-NLE) is explored, which involves three steps: preprocessing by NLPM filtering, sample area selection, parameter estimation. And then, we advance a stable-BM3D (SBM3D) method with NLPM filtering to avoid artificial effects and bias effects. Finally, connecting the NLPM-NLE and SBM3D by merging the same part, we develop a non-parametric single image denoising (NPSID) method. Additionally, our proposed BM3D method with NLPM-NLE and the NPSID are compared with other blind denoising methods including PCA + BM3D, WTP + BM3D, and ESM + BM3D on real image denoising. Experiments show that the proposed non-parametric method can automatically and effectively remove noise and preserve details.
机译:BM3D方法实现了优异的去噪性能,但它具有人工效应和偏置效应,其性能在很大程度上取决于噪声水平参数。为了解决这个问题,我们提出了一种混合BM3D和PDE方法,用于非参数单图像去噪。首先,提出了一种非本地Perona-Malik(NLPM)滤波,并且我们证明了其不连续性维护,平均不变性,收敛和局部连续性。基于这些数学属性,探讨了基于NLPM的噪声电平估计器(NLPM-NLE),其涉及三个步骤:通过NLPM滤波,采样区域选择,参数估计预处理。然后,我们使用NLPM滤波推进稳定-BM3D(SBM3D)方法,以避免人工效应和偏置效应。最后,通过合并相同的部分连接NLPM-NLE和SBM3D,我们开发了非参数单图像去噪(NPSID)方法。此外,我们提出的BM3D方法与NLPM-NLE和NPSID的方法与其他盲人去噪方法进行比较,包括PCA + BM3D,WTP + BM3D和ESM + BM3D在真实图像上去噪。实验表明,所提出的非参数方法可以自动且有效地去除噪声并保留细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号