首页> 外文期刊>Signal processing >Riemannian geometry for compound Gaussian distributions: Application to recursive change detection
【24h】

Riemannian geometry for compound Gaussian distributions: Application to recursive change detection

机译:复合高斯分布的Riemannian几何图形:应用于递归变更检测

获取原文
获取原文并翻译 | 示例

摘要

A new Riemannian geometry for the zero-mean Compound Gaussian distribution with deterministic textures is proposed. In particular, the Fisher information metric (up to a factor) is obtained, along with corresponding geodesics and distance function. This new geometry is applied on a change detection problem on Multivariate Image Times Series: a recursive approach based on Riemannian optimization is developed. As shown on simulated data, it allows to reach optimal performance while being computationally more efficient.
机译:提出了一种具有确定性纹理的零平均复方高斯分布的新的riemannian几何形状。特别地,获得Fisher信息度量(最多一个因子)以及相应的测地测带和距离功能。这种新几何在多变量图像时间序列中的变化检测问题上应用了:开发了一种基于Riemannian优化的递归方法。如模拟数据所示,它允许在计算上更有效的同时达到最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号