首页> 外文期刊>Signal processing >Learning content-specific codebooks for blind quality assessment of screen content images
【24h】

Learning content-specific codebooks for blind quality assessment of screen content images

机译:学习特定于内容的码本,用于屏幕内容图像的盲质质量评估

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel blind quality assessment method for screen content images (SCIs) by learning content-specific codebooks. Instead of manually extracting quality-aware features for quality evaluation, the proposed method automatically generates effective features based on a simple feature encoding technique over content-specific codebooks. Considering the mixed content type in SCIs, content-specific codebooks including textual codebook and pictorial codebook are first learned in an offline manner. Given an input SCI, a textual/pictorial segmentation method is first applied to divide the SCI into textual and pictorial regions. Then, patches in different regions are respectively encoded using the learned textual and pictorial codebooks to produce the corresponding feature codes. Finally, the feature codes of each patch are aggregated, by using a percentage-based local pooling scheme, to yield the global feature codes of different regions. The final quality-predictive features used for quality regression are the combined global feature codes of different regions. Despite its simplicity, our method delivers low computational complexity, making it well suitable for real-time applications. Extensive experiments are conducted on three public SCI databases to validate the performance of our method, the results well confirm its superiority over the existing relevant full reference and no reference SCI quality assessment methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文通过学习特定于内容的码本,提出了一种用于屏幕内容图像(SCI)的新型盲质量评估方法。该建议的方法而不是手动提取质量评估的质量感知功能,而是基于在特定于内容特定的码本上的简单特征编码技术自动生成有效功能。考虑到SCI中的混合内容类型,首先以离线方式学习包括文本码本和图片码本的内容特定的码本。给定输入SCI,首先应用文本/图案分段方法以将SCI划分为文本和图形区域。然后,使用学习的文本和图示码本分别对不同区域中的补丁进行编码以产生相应的特征代码。最后,通过使用基于百分比的本地池化方案来聚合每个补丁的特征代码,从而产生不同区域的全局特征代码。用于质量回归的最终质量预测功能是不同地区的组合全局特征代码。尽管其简单性,但我们的方法提供了低计算复杂性,使其适用于实时应用。在三个公共SCI数据库上进行了广泛的实验,以验证我们的方法的性能,结果良好地确认其对现有相关的完整参考和没有参考SCI质量评估方法的优势。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Signal processing》 |2019年第8期|248-258|共11页
  • 作者单位

    Ningbo Univ Fac Informat Sci & Engn Ningbo Zhejiang Peoples R China;

    Ningbo Univ Fac Informat Sci & Engn Ningbo Zhejiang Peoples R China|Nanjing Univ Natl Key Lab Software New Technol Nanjing Jiangsu Peoples R China;

    Ningbo Univ Fac Informat Sci & Engn Ningbo Zhejiang Peoples R China;

    Ningbo Univ Fac Informat Sci & Engn Ningbo Zhejiang Peoples R China|Nanjing Univ Natl Key Lab Software New Technol Nanjing Jiangsu Peoples R China;

    Zhejiang Wanli Univ Ningbo Key Lab DSP Ningbo Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Screen content image; Image quality assessment; No-reference; Content-specific codebooks; Feature encoding;

    机译:屏幕内容图像;图像质量评估;没有引用;特定于内容的码本;特征编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号