首页> 外文期刊>Signal processing >A data augmentation method based on cycle-consistent adversarial networks for fluorescence encoded microsphere image analysis
【24h】

A data augmentation method based on cycle-consistent adversarial networks for fluorescence encoded microsphere image analysis

机译:一种基于循环一致对抗网络的荧光编码微球图像分析的数据增强方法

获取原文
获取原文并翻译 | 示例

摘要

The training process of supervised learning requires a large amount of training data to achieve satisfactory performance. However, the acquisition and annotation from biological images analysis is costly. This article presents a data augmentation method based on Cycle-Consistent Adversarial Networks (CycleGAN) and applied to the annotated image example generation of Fluorescence Encoded Microsphere (FEM) image analysis. A large number of synthetic FEM images and corresponding annotations are generated by computer scripts. A forward generator from CycleGAN is trained to transform the synthetic images into the real images domain for the training data augmentation of the Mask Region Convolutional Neural Network (Mask R-CNN). The training results evaluated for different sizes of real/synthetic/transformed FEM image training sets on Mask R-CNN demonstrate the effectiveness of this method. The average precision at the interval over union of 0.50 (AP(0.)(50)) converges to 95.6% and the AP(0.75) reaches 91.8%, and both are about 10% higher than that of the synthetic image set. The experimental results demonstrate the effectiveness of this method in annotated FEM image augmentation. (C) 2019 Published by Elsevier B.V.
机译:监督学习的培训过程需要大量的培训数据来实现令人满意的性能。然而,生物图像分析的获取和注释是昂贵的。本文提出了一种基于循环一致的对冲网络(Cyclegan)的数据增强方法,并应用于荧光编码微球(FEM)图像分析的注释图像示例生成。计算机脚本生成了大量合成的FEM图像和相应的注释。来自Cixclangan的前进发生器训练以将合成图像转换为真实图像域,以进行掩模区域卷积神经网络(掩模R-CNN)的训练数据增强。在掩模R-CNN上对不同尺寸的实际/合成/转换的有限元图像训练组评估的培训结果证明了该方法的有效性。 0.50(AP(0.)(50)(50))收敛到95.6%的平均精度会聚至95.6%,AP(0.75)达到91.8%,两者均高于合成图像集的10%。实验结果表明了该方法在注释的有限元图像增强中的有效性。 (c)2019年由elestvier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号