首页> 外文期刊>Signal processing >Iterative reweighted proximal projection based DOA estimation algorithm for monostatic MIMO radar
【24h】

Iterative reweighted proximal projection based DOA estimation algorithm for monostatic MIMO radar

机译:基于迭代加权近端投影的单基地MIMO雷达DOA估计算法

获取原文
获取原文并翻译 | 示例

摘要

The problem of nonconvex and nonsmooth sparse representation for direction of arrival (DOA) estimation in monostatic multiple-input multiple-output (MIMO) radar is addressed in this paper, which is dealt with by a novel iterative reweighted proximal projection method. The proposed method firstly obtains the array covariance vector by performing the vectorization operation on the reduced dimensional covariance matrix. Then a sparse representation framework is formulated for DOA estimation through minimizing the nonconvex and nonsmooth sparsity promoting function, and the weighted matrix, which is based on the high-order power of the inverse of the reduced dimensional covariance matrix, is designed for reweighting the nonconvex and nonsmooth minimization to enhance the sparsity of the solution. Thereafter, an iterative algorithm using proximal projection approach along with reweighted penalty ideas is developed to recover the sparse solution. Finally, DOA estimation is accomplished by searching the spectrum of the solution. Due to achieving a better approximation to the l_0 norm, the proposed method exhibits better DOA estimation accuracy than the reweighted l_1 -SVD algorithm and reweighted SLO algorithm. Furthermore, the proposed method can avoid any α-priori information on the number of targets. Simulation results are presented to verify the effectiveness of the proposed method.
机译:本文解决了单静态多输入多输出(MIMO)雷达中到达方向(DOA)估计的非凸和非光滑稀疏表示问题,该问题通过一种新颖的迭代加权近端投影方法来解决。该方法首先通过对降维协方差矩阵进行矢量化运算来获得阵列协方差矢量。然后通过最小化非凸和非平滑稀疏性促进函数建立稀疏表示框架,以进行DOA估计,并基于降维协方差矩阵逆的高次幂,设计加权矩阵来对非凸进行加权和非平滑最小化以增强解决方案的稀疏性。此后,开发了一种使用近端投影方法和重加权惩罚思想的迭代算法来恢复稀疏解。最后,通过搜索解决方案的频谱来完成DOA估计。由于获得了更好的l_0范数近似,因此与重新加权的l_1 -SVD算法和重新加权的SLO算法相比,该方法具有更好的DOA估计精度。此外,所提出的方法可以避免关于目标数目的任何α先验信息。仿真结果表明了该方法的有效性。

著录项

  • 来源
    《Signal processing》 |2020年第7期|107537.1-107537.8|共8页
  • 作者单位

    Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing 210044 China Jiangsu Key Laboratory of Meteorological Observation and Information Processing Nanjing University of Information Science and Technology Nanjing 210044 China School of Electronic and Information Engineering Nanjing University of Information Science and Technology Nanjing 210044 China;

    School of Electronic and Information Engineering Nanjing University of Information Science and Technology Nanjing 210044 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MIMO radar; DOA estimation; Sparse representation; Proximal projection; Weighted matrix;

    机译:MIMO雷达DOA估算;稀疏表示;近端投影;加权矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号