首页> 外文期刊>Signal processing >Automatic modulation recognition of compound signals using a multi-label classifier: A case study with radar jamming signals
【24h】

Automatic modulation recognition of compound signals using a multi-label classifier: A case study with radar jamming signals

机译:使用多标签分类器自动调制复合信号的识别:以雷达干扰信号为例

获取原文
获取原文并翻译 | 示例

摘要

The modern battlefield is getting more complicated due to the increasing number of different radiation sources as well as their fierce contention (interference) and confrontations Gamming) in the frequency spectrum. A radar, or a communication system usually has to struggle with multiple overlapped signals injected into its receiver to ensure desired system performance. Thus, the requirement for recognition of the modulation type of each constituent signal in a compound signal has emerged as a multiuser automatic modulation classification (mAMC) task in a signal processing field. This paper proposes a deep multi-label based mAMC framework (MLAMC) for compound signals which includes three serial steps, the time-frequency representation image (TFRI) extraction for signal preprocessing, multi-label convolu-tional neural network (MLCNN) construction for multi-label classification, and multi-decision thresholds optimization for output label decision. By applying the proposed MLAMC method on the compound radar jamming signals as a case study, the effectiveness and superiority of our proposed method are validated in four aspects of a smaller model size, better total performance, good extensibility for unseen signal combinations, and fine-grained analysis for recognition results.
机译:由于不同辐射源的数量不断增加,以及它们在频谱上的激烈争用(干扰)和对抗(Gamming),现代战场变得越来越复杂。雷达或通信系统通常必须应对注入其接收器的多个重叠信号以确保所需的系统性能。因此,作为信号处理领域中的多用户自动调制分类(mAMC)任务,已经出现了识别复合信号中的每个组成信号的调制类型的要求。本文针对复合信号提出了一种基于多标签的深层mAMC框架(MLAMC),该框架包括三个连续步骤:用于信号预处理的时频表示图像(TFRI)提取,用于多标签卷积神经网络(MLCNN)的构建多标签分类和用于输出标签决策的多决策阈值优化。通过将建议的MLAMC方法应用于复合雷达干扰信号作为案例研究,我们的方法的有效性和优越性在以下四个方面得到了验证:模型尺寸较小,总体性能更好,对看不见的信号组合具有良好的可扩展性,以及识别结果的细粒度分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号