首页> 外文期刊>Signal processing >Persymmetric adaptive detection in subspace interference plus gaussian noise
【24h】

Persymmetric adaptive detection in subspace interference plus gaussian noise

机译:子空间干扰加高斯噪声中的超对称自适应检测

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of detecting point-like targets in the presence of interference and Gaussian noise. The target and interference are described by subspace models where the target and interference subspaces are linearly independent. Persymmetry is exploited to propose an adaptive detector to alleviate the requirement of training data. This detector exhibits a constant false alarm rate against the noise covariance matrix. We derive analytical expressions for the probability of false alarm and the detection probability of the proposed detector, which are verified using Monte Carlo simulations. These theoretical expressions can greatly facilitate threshold setting and performance evaluation. The superiority of the proposed detector over conventional ones is its ability to work in the sample-starved situation where the training data size is less than (but more than half of) the data dimension. Numerical examples indicate that the proposed detector outperforms its counterparts. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们考虑在存在干扰和高斯噪声的情况下检测点状目标的问题。目标和干扰由子空间模型描述,其中目标和干扰子空间线性独立。利用对称性提出了一种自适应检测器,以减轻训练数据的需求。该检测器针对噪声协方差矩阵表现出恒定的误报率。我们导出了误报概率和拟议探测器的探测概率的解析表达式,这些表达式已使用蒙特卡洛模拟进行了验证。这些理论表达式可以极大地促进阈值设置和性能评估。所提出的检测器相对于传统检测器的优势在于其能够在样本不足的情况下工作,在这种情况下,训练数据大小小于(但大于数据维度的一半)。数值示例表明,所提出的探测器性能优于同类探测器。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号