首页> 外文期刊>Signal processing >A hidden semi-Markov model for indoor radio source localization using received signal strength
【24h】

A hidden semi-Markov model for indoor radio source localization using received signal strength

机译:使用接收信号强度进行室内无线电源定位的隐藏半马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

Multipath propagation makes the use of received signal strength (RSS) unreliable as a signal propagation model for localization of a radio source based on RSS data. An approach to mitigation of this problem is the use of a Hidden Markov model (HMM) to represent the relationship between RSS and the radio source location by incorporating an environment prior and RSS source dynamics. The HMM structure forces a geometric form for the distribution for the sojourn time. This, combined with missing data problems, reduces confidence in location estimation. It is found, in this paper, that Hidden semi-Markov Models (HsMMs), with a more flexible sojourn time distribution are more able to represent source dynamics while retaining the advantages of HMMs for environmental constraints and improving resilience to missing measurements. The performance of the proposed HsMM algorithm is compared with a standard HMM via experiments and simulations involving indoor radio source localization using RSS data. Simulations use a ray tracing software-based simulator and the experiments for transmitter localization with RSS data are collected by software defined radios. (C) 2019 Elsevier B.V. All rights reserved.
机译:多径传播使接收信号强度(RSS)的使用不可靠,无法用作基于RSS数据对无线电源进行定位的信号传播模型。缓解此问题的一种方法是使用隐马尔可夫模型(HMM)通过合并环境先验和RSS源动态来表示RSS与无线电源位置之间的关系。 HMM结构强制在停留时间内分配一种几何形式。加上丢失的数据问题,降低了位置估计的可信度。在本文中发现,具有更灵活的停留时间分布的隐式半马尔可夫模型(HsMM)更能表示源动态,同时保留了HMM在环境约束和提高对丢失测量的适应性方面的优势。通过涉及使用RSS数据进行室内无线电源定位的实验和模拟,将建议的HsMM算法的性能与标准HMM进行了比较。仿真使用基于光线跟踪软件的仿真器,并且通过软件定义的无线电来收集具有RSS数据的发射机定位的实验。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号