首页> 外文期刊>Signal processing >Normalized LMS algorithm and data-selective strategies for adaptive graph signal estimation
【24h】

Normalized LMS algorithm and data-selective strategies for adaptive graph signal estimation

机译:用于自适应图信号估计的归一化LMS算法和数据选择策略

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a normalized least-mean-squares (NLMS) algorithm for online estimation of bandlimited graph signals (GS) using a reduced number of noisy measurements. As in the classical adaptive filtering framework, the resulting GS estimation technique converges faster than the least-mean-squares (LMS) algorithm while being less complex than the recursive least-squares (RLS) algorithm, both recently recast as adaptive estimation strategies for the GS framework. Detailed steady-state mean-squared error and deviation analyses are provided for the proposed NLMS algorithm, and are also employed to complement previous analyses on the LMS and RLS algorithms. Additionally, two different time-domain data-selective (DS) strategies are proposed to reduce the overall computational complexity by only performing updates when the input signal brings enough innovation. The parameter setting of the algorithms is performed based on the analysis of these DS strategies, and closed formulas are derived for an accurate evaluation of the update probability when using different adaptive algorithms. The theoretical results predicted in this work are corroborated with high accuracy by numerical simulations. (C) 2019 Elsevier B.V. All rights reserved.
机译:这项工作提出了一种归一化最小均方(NLMS)算法,用于使用减少的噪声测量数量来在线估计带限图信号(GS)。与传统的自适应滤波框架一样,生成的GS估计技术的收敛速度比最小均方(LMS)算法快,但不如递归最小二乘(RLS)算法复杂。 GS框架。为拟议的NLMS算法提供了详细的稳态均方误差和偏差分析,并且还用于补充先前对LMS和RLS算法的分析。此外,提出了两种不同的时域数据选择(DS)策略,仅在输入信号带来足够的创新时才执行更新,从而降低总体计算复杂度。基于对这些DS策略的分析来执行算法的参数设置,并得出封闭式,以在使用不同的自适应算法时准确评估更新概率。通过数值模拟,可以高精度地证实这项工作中预测的理论结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号