首页> 外文期刊>Signal processing >Edge-preserving image denoising using a deep convolutional neural network
【24h】

Edge-preserving image denoising using a deep convolutional neural network

机译:使用深度卷积神经网络的边缘保留图像去噪

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel denoising approach making use of a deep convolutional neural network to preserve image edges. The network is trained by using the edge map obtained from the well-known Canny algorithm and aims at determining if a noisy patch in non-subsampled shearlet domain corresponds to the location of an edge. In the first step of the proposed denoising algorithm, we use the nonsubsampled shearlet transform to decompose the noisy image into a low-frequency subband and a series of high-frequency subbands. Subsequently, 3D blocks are formed by stacking 2D blocks of high-frequency subbands along a specific direction. Each 3D patch is then fed to the trained deep convolutional neural network to determine if it belongs to the edge-related class or not. Finally, the NSST (non-subsampled shearlet transform) coefficients belonging to the edge-related class remain unchanged, and those not belonging to the edge-related class are denoised by the shrinkage method using an adaptive threshold. Experimental results on various test images including benchmark grayscale images and medical ultrasound images demonstrate that the proposed method achieves better performance compared to some state-of-the-art denoising approaches. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了一种利用深度卷积神经网络来保留图像边缘的新型降噪方法。通过使用从众所周知的Canny算法获得的边缘图来训练网络,该网络的目的是确定非二次采样的Slicelet域中的噪声斑块是否对应于边缘的位置。在所提出的降噪算法的第一步中,我们使用非下采样的小波变换将噪声图像分解为一个低频子带和一系列高频子带。随后,通过沿特定方向堆叠高频子带的2D块来形成3D块。然后将每个3D补丁馈送到经过训练的深度卷积神经网络,以确定其是否属于边缘相关类。最终,属于边缘相关类别的NSST(非下采样剪切波变换)系数保持不变,不属于边缘相关类别的NSST系数通过使用自适应阈值的收缩方法进行去噪。在包括基准灰度图像和医学超声图像在内的各种测试图像上的实验结果表明,与某些最新的降噪方法相比,该方法具有更好的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号