首页> 外文期刊>Signal processing >A hybrid filter with neighborhood analysis for impulsive noise removal in color images
【24h】

A hybrid filter with neighborhood analysis for impulsive noise removal in color images

机译:带有邻域分析的混合滤波器,用于消除彩色图像中的脉冲噪声

获取原文
获取原文并翻译 | 示例

摘要

A new neighborhood analysis hybrid vector filter (NAHVF) approach for impulse noise removal in color images is presented. First, a fuzzy decision rule using a semi-neighborhood set statistic ordered technique is used to detect impulse noise. Accordingly, two pixel sets, a noise-free neighborhood set and a partial relation noise-free neighborhood set, are defined. For a noisy pixel, one of three filters; a vector median filter within the noise-free neighborhood set, a similarity weighted mean filter within the partial relation noise-free neighborhood set, and a noise-free component spatial distance weighted mean filter, are selected to filter the noise. Each of these three filters is designed with different filtering strategies. One advantage of the proposed scheme is that the noise-free components of the pixel vector in the noise-free neighborhood set or partial relation noise-free neighborhood set are used to design the filter. This effectively reduces additional "filtering" noise into components that were noise-free before filtering. Another advantage is that the locations of correlated pixels in the same window and the correlations among different channel images are fully utilized for noise removal. Finally, experimental results show that the proposed method effectively removes impulse noise and preserves color information as well as image details. (C) 2018 Elsevier B.V. All rights reserved.
机译:提出了一种新的邻域分析混合矢量滤波器(NAHVF),用于去除彩色图像中的脉冲噪声。首先,使用半邻集统计有序技术的模糊决策规则用于检测脉冲噪声。因此,定义了两个像素集,即无噪声邻域集和局部关系无噪声邻域集。对于有噪点的像素,请使用以下三个滤镜之一:选择无噪声邻域集合内的向量中值滤波器,部分关系无噪声邻域集合内的相似度加权均值滤波器以及无噪声分量空间距离加权均值滤波器以对噪声进行滤波。这三个过滤器中的每一个都设计有不同的过滤策略。所提出的方案的一个优点是,使用无噪声邻域集合或部分关系无噪声邻域集合中的像素矢量的无噪声分量来设计滤波器。这有效地将额外的“过滤”噪声降低到过滤之前无噪声的组件中。另一个优点是,在同一窗口中相关像素的位置以及不同通道图像之间的相关性被完全用于噪声去除。最后,实验结果表明,该方法有效去除了脉冲噪声,并保留了颜色信息以及图像细节。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号