首页> 外文期刊>Signal processing >DOA estimation with planar array via spatial finite rate of innovation reconstruction
【24h】

DOA estimation with planar array via spatial finite rate of innovation reconstruction

机译:平面阵列通过创新有限空间重构的DOA估计

获取原文
获取原文并翻译 | 示例

摘要

Recently, a new DOA estimation algorithm called FRIDA was proposed. It is based on spatial finite rate of innovation (FRI) reconstruction and exhibits some attractive features. In this paper, we propose a variation of FRIDA which is called FRIDA-V (suffix "-V" means variation) . FRIDA-V improves FRIDA in three aspects. Firstly, a multiple measurement vectors (MMV) spatial FRI model is built in the direct data domain rather than the covariance domain, which avoids the model residual error in FRIDA and makes the new method capable of handling both incoherent and coherent sources. Secondly, the full column rank constraint on the mapping matrix is relaxed by adopting the pseudo-inverse technique, which makes it possible to reduce the Bessel function approximation error to a negligible level. Thirdly, the multiple random initializations in the iterative calculations are replaced by a single straightforward initialization, which will speed up the convergence to the optimal solution and save the computational resource. Theoretical derivations and numerical simulation results are given to demonstrate the effectiveness of the proposed method. Compared with the representative methods, the new method is gridless and possesses higher performance with closely-spaced sources and under low signal-to-noise ratio (SNR), small number of snapshots scenarios. (C) 2018 Elsevier B.V. All rights reserved.
机译:最近,提出了一种新的DOA估计算法,称为FRIDA。它基于空间有限创新率(FRI)重建,并具有一些吸引人的功能。在本文中,我们提出了FRIDA的一种变体,称为FRIDA-V(后缀“ -V”表示变体)。 FRIDA-V从三个方面改进了FRIDA。首先,在直接数据域而不是协方差域中建立了多个测量向量(MMV)空间FRI模型,这避免了FRIDA中的模型残留误差,并使该新方法能够处理非相干和相干源。其次,通过采用伪逆技术来放松对映射矩阵的全列秩约束,这使得可以将贝塞尔函数逼近误差减小到可忽略的水平。第三,将迭代计算中的多个随机初始化替换为单个简单的初始化,这将加快收敛到最优解的速度并节省计算资源。理论推导和数值仿真结果证明了该方法的有效性。与有代表性的方法相比,该新方法是无网格的,并且在源距很近的情况下具有更高的性能,并且在低信噪比(SNR)和少量快照的情况下。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号