首页> 外文期刊>Signal Processing, IET >Rao and wald tests design of polarimetric multiple-input multiple-output radar in compound-gaussian clutter
【24h】

Rao and wald tests design of polarimetric multiple-input multiple-output radar in compound-gaussian clutter

机译:复合高斯杂波中偏振多输入多输出雷达的Rao和wald测试设计

获取原文
获取原文并翻译 | 示例

摘要

In high-resolution radars or at low gazing angles, the clutter is more satisfied in the compound-Gaussian model. Meanwhile, the polarisation diversity can be exploited to enhance the detection performance. Motivated by extending the detection problem of multiple-input multiple-output radar to such cases, this study mainly addresses the adaptive detectors design with an unknown covariance matrix based on Rao and Wald criterions. The two-step design strategy is adopted. Three estimation strategies of covariance with secondary data, such as sampled covariance matrix (SCM), normalised sampled covariance matrix (NSCM) and fixed point estimation (FPE) matrix, are introduced to make derived receivers fully adaptive. A thorough performance assessment is given by several numerical examples, the results of which show that Rao and Wald tests can provide good detection performance in even spikier clutter, and the polarimetric diversity can also be exploited to improve the detection performance. Meanwhile, the FPE strategy is more suitable to implement the adaptive detection algorithms, and the adaptive loss is completely acceptable in practical applications.
机译:在高分辨率雷达或低凝视角度下,复合高斯模型中的杂波更加令人满意。同时,可以利用极化分集来提高检测性能。通过将多输入多输出雷达的检测问题扩展到此类情况,本研究主要针对基于Rao和Wald准则的未知协方差矩阵的自适应检测器设计。采用两步设计策略。引入了三种与二次数据的协方差估计策略,例如采样协方差矩阵(SCM),归一化采样协方差矩阵(NSCM)和定点估计(FPE)矩阵,以使派生接收器完全自适应。通过几个数值示例对性能进行了全面评估,结果表明,Rao和Wald测试甚至可以在杂波状杂波中提供良好的检测性能,还可以利用极化分集来提高检测性能。同时,FPE策略更适合于实现自适应检测算法,在实际应用中自适应损耗是完全可以接受的。

著录项

  • 来源
    《Signal Processing, IET》 |2011年第1期|p.85-96|共12页
  • 作者

  • 作者单位

    School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu City, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号