首页> 外文期刊>Signal Processing, IET >Hidden-Markov-model-based voice activity detector with high speech detection rate for speech enhancement
【24h】

Hidden-Markov-model-based voice activity detector with high speech detection rate for speech enhancement

机译:具有高语音检测率的基于隐马尔可夫模型的语音活动检测器,用于语音增强

获取原文
获取原文并翻译 | 示例

摘要

A new voice activity detection (VAD) algorithm with soft decision output in Mel-frequency domain is developed based on hidden Markov model (HMM) and is incorporated in an HMM-based speech enhancement system. The proposed VAD uses a two-state ergodic HMM representing speech presence and speech absence. The states are constructed from noisy speech and noise HMMs used in the speech enhancement system. This composite model provides a robust detection of speech segments in the presence of noise and obviates the need for extra modeling in HMM-based speech enhancement applications. As the main purpose of the proposed VAD is to detect speech segments accurately, a hang-over mechanism is proposed and is applied on the output of the VAD to improve the speech detection rate. The VAD is integrated in the HMM-based speech enhancement system in Mel-frequency spectral (MFS) and cepstral (MFC) domains. The performance of the proposed VAD, the effectiveness of the hang-over mechanism and the performance of the VAD-integrated speech enhancement system are evaluated on four noise types at different SNR levels. The experimental results confirm the superiority of the proposed VAD compared to the reference methods particularly for speech detection rate at the dominant noisy conditions.
机译:基于隐马尔可夫模型(HMM),开发了一种在梅尔频域中具有软判决输出的新语音活动检测(VAD)算法,并将其结合到基于HMM的语音增强系统中。拟议的VAD使用代表语音存在和语音缺失的两态遍历HMM。这些状态是由语音增强系统中使用的嘈杂的语音和噪声HMM构成的。该复合模型在存在噪声的情况下提供了对语音段的鲁棒检测,并且消除了在基于HMM的语音增强应用程序中进行额外建模的需要。由于提出的VAD的主要目的是准确地检测语音片段,因此提出了一种挂断机制,并将其应用于VAD的输出以提高语音检测率。 VAD集成在Mel频谱(MFS)和倒谱(MFC)域的基于HMM的语音增强系统中。拟议的VAD的性能,挂断机制的有效性以及VAD集成的语音增强系统的性能在不同SNR级别的四种噪声类型上进行了评估。实验结果证实了所提出的VAD与参考方法相比的优越性,特别是对于在主要噪声条件下的语音检测率而言。

著录项

  • 来源
    《Signal Processing, IET》 |2012年第1期|p.54-63|共10页
  • 作者

    Veisi H.; Sameti H.;

  • 作者单位

    Department of Computer Engineering, Sharif University of Technology, Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号