首页> 外文期刊>Signal Processing, IET >Combinatorial optimisation for pulse position modulation-ultra wideband signal detection based on compressed sensing and analogue-to-information converter
【24h】

Combinatorial optimisation for pulse position modulation-ultra wideband signal detection based on compressed sensing and analogue-to-information converter

机译:基于压缩传感和模数转换器的脉冲位置调制-超宽带信号检测组合优化

获取原文
获取原文并翻译 | 示例

摘要

Pulse position modulation-ultra wideband (PPM-UWB) communication signal is hard to detect and sample directly, owing to its ultra-low power spectral density and wide bandwidth. There are already some researches on using analogue-to-information converter (AIC) technology and compressed sensing (CS) theory to under-sample and detect PPM-UWB communication signal, utilising its sparseness in time domain. However, greedy algorithm lacks of restriction on sparseness of reconstructed vector, while common restrictions on sparseness (e.g. convex optimisation) has high computational complexity. To solve these problems, a combinatorial optimisation method is proposed in this study to detect PPM-UWB communication signal based on CS and AIC. Reconstruction error and sparseness of reconstructed vector are restricted by l2- and lp-norms, respectively. lp-norm (0 <; p <; 1), which is a non-convex function, has stricter restriction on sparseness than l1-norm. Meanwhile, the steepest descent method is adopted for lp-norm optimisation, which can rapidly converge to objective values. Proposed method has more comprehensive restriction than greedy algorithm and convex optimisation, while maintain low complexity in computation as greedy algorithm. Numerical experiments demonstrate the validity of proposed method.
机译:脉冲位置调制-超宽带(PPM-UWB)通信信号由于其超低的功率谱密度和较宽的带宽而难以直接检测和采样。已经有一些利用模数转换器(AIC)技术和压缩传感(CS)理论对PPM-UWB通信信号进行时域稀疏和欠采样和检测的研究。然而,贪婪算法对重构向量的稀疏性没有限制,而对稀疏性的常见限制(例如凸优化)具有很高的计算复杂度。为了解决这些问题,本文提出了一种组合优化方法,用于基于CS和AIC的PPM-UWB通信信号检测。重构向量的重构误差和稀疏度分别受l2-范数约束和lp-范数约束。 lp-norm(0 <; p <; 1)是非凸函数,对稀疏性的限制比l1-norm严格。同时,对lp范数优化采用最速下降法,可以迅速收敛到目标值。与贪婪算法和凸优化算法相比,本文提出的方法具有更全面的约束,而贪婪算法的计算复杂度却较低。数值实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号