首页> 外文期刊>Signal Processing, IET >Universal audio steganalysis based on calibration and reversed frequency resolution of human auditory system
【24h】

Universal audio steganalysis based on calibration and reversed frequency resolution of human auditory system

机译:基于人类听觉系统校准和反向频率分辨率的通用音频隐写分析

获取原文
获取原文并翻译 | 示例

摘要

Calibration and higher-order statistics are standard components of image steganalysis. However, these techniques have not yet found adequate attention in audio steganalysis. Specifically, most of current studies are either non-calibrated or only based on noise removal. The goal of this study is to fill these gaps and to show that calibrated features based on re-embedding technique improve performance of audio steganalysis. Furthermore, the authors show that least significant bit is the most sensitive bit plane to data hiding algorithms, and therefore it can be employed as a universal embedding method. The proposed features also benefit from an efficient model which is tailored to the needs for audio steganalysis and represent the maximum deviation from human auditory system. Performance of the proposed method is evaluated on a wide range of data hiding algorithms in both targeted and universal paradigms. The results show the effectiveness of the proposed method in detecting the finest traces of data hiding algorithms in very low embedding rates. The system detects Steghide at capacity of 0.06 bit per symbol with sensitivity of 98.6% (music) and 78.5% (speech). These figures are, respectively, 7.1% and 27.5% higher than the state-of-the-art results based on R-Mel-frequency cepstral coefficient features.
机译:校准和高阶统计是图像隐写分析的标准组件。但是,这些技术尚未在音频隐写分析中引起足够的重视。具体而言,当前的大多数研究要么未经校准,要么仅基于噪声消除。这项研究的目的是填补这些空白,并表明基于重新嵌入技术的校准功能可以提高音频隐写分析的性能。此外,作者表明,最低有效位是数据隐藏算法最敏感的位平面,因此可以将其用作通用嵌入方法。所提出的特征还得益于针对音频隐写分析的需求量身定制的高效模型,该模型代表了与人类听觉系统的最大偏差。在目标范式和通用范式中,对各种数据隐藏算法的性能都进行了评估。结果表明,该方法在非常低的嵌入率下检测最佳数据隐藏算法痕迹的有效性。系统以每个符号0.06位的容量检测Steghide,灵敏度为98.6%(音乐)和78.5%(语音)。这些数字分别比基于R-Mel频率倒谱系数特征的最新结果高7.1%和27.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号