首页> 外文期刊>Signal Processing, IET >Multichannel sampling expansions in the linear canonical transform domain associated with explicit system functions and finite samples
【24h】

Multichannel sampling expansions in the linear canonical transform domain associated with explicit system functions and finite samples

机译:与显式系统函数和有限样本相关联的线性规范变换域中的多通道采样扩展

获取原文
获取原文并翻译 | 示例

摘要

Focusing on two issues associated with the existing multichannel sampling expansions (MSEs) of the linear canonical transform (LCT), those are, the implicit expression of system functions possibly leads to the inconvenience of reconstructing signals in practical situations, and the reconstruction of the original signal from its finite samples, the authors first propose a novel MSE in the Fourier transform domain, providing an explicit expression for the response function of the reconstruction filter. Moreover on this basis, they formulate two kinds of LCT-type of MSEs related, respectively, to the modified convolution structure and the generalised convolution structure of the LCT. For these MSEs, though there is an explicit expression for system functions, the number of the signal's samples takes infinity. They then obtain multichannel interpolation formulae that interpolate a finite set of uniform samples through applying the derived MSEs to the LCT-band-limited, chirp periodic signals. They further present some possible applications of their proposals to show the advantage of the theory. Finally, the simulations are also performed to verify the correctness of the derived results.
机译:着眼于与线性典范变换(LCT)的现有多通道采样扩展(MSE)相关的两个问题,即系统功能的隐式表达可能会导致在实际情况下重构信号的不便之处,以及原始信号的重构。从有限样本中提取信号,作者首先提出了一种在傅立叶变换域中的新型MSE,为重建滤波器的响应函数提供了明确的表示。此外,在此基础上,他们制定了两种与LCT的改进卷积结构和广义卷积结构相关的LSE型MSE。对于这些MSE,尽管系统功能有一个明确的表达式,但信号样本的数量取无穷大。然后,他们获得了多通道插值公式,该公式通过将导出的MSE应用于LCT带宽受限的线性调频周期信号来插值有限的一组均匀样本。他们还提出了一些建议的可能应用,以展示该理论的优势。最后,还执行仿真以验证导出结果的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号