首页> 外文期刊>Signal Processing, IET >HS remote sensing image restoration using fusion with MS images by EM algorithm
【24h】

HS remote sensing image restoration using fusion with MS images by EM algorithm

机译:利用EM算法与MS图像融合的HS遥感图像恢复。

获取原文
获取原文并翻译 | 示例

摘要

Remote sensing images are widely used for different areas from mineral exploration to agricultural applications and poor quality of hyperspectral (HS) images will directly have adverse effect on these applications. In this study, a method is proposed to restore degraded HS images. To achieve this aim, another multispectral (MS) observation of the same scene is supposed to be available and restoration is fulfilled by fusion of HS images and MS images. The proposed method gains maximum a posteriori estimation and is based on expectation maximisation algorithm. Deblurring and denoising are performed separately. Deblurring is done in spatial domain via non-overlapping blocks, whereas denoising is implemented in wavelet domain. To represent the coefficients in wavelet domain, instead of multinormal model, Gaussian scale mixture is exploited. The proposed method is validated on airborne visible/infrared imaging spectrometer (AVIRIS) and HS digital imagery collection experiment (HYDICE) databases and experimental results signify that the proposed method outperforms state-of-the-art techniques cited in the literature and signal-to-noise ratio is improved as much as 15.71 dB for Moffett database and 16.26 dB for HYDICE database.
机译:遥感图像广泛用于从矿物勘探到农业应用的不同领域,而高光谱(HS)图像质量差将直接对这些应用产生不利影响。在这项研究中,提出了一种还原退化的HS图像的方法。为了实现这一目标,应该对同一场景进行另一次多光谱(MS)观察,并通过融合HS图像和MS图像来完成恢复。该方法基于期望最大化算法,获得了最大的后验估计。去模糊和去噪分别进行。去噪是通过非重叠块在空间域中完成的,而去噪是在小波域中实现的。为了表示小波域中的系数,而不是使用多态模型,而是使用了高斯尺度混合。该方法在机载可见/红外成像光谱仪(AVIRIS)和HS数字图像采集实验(HYDICE)数据库上得到了验证,实验结果表明,该方法优于文献中引用的最新技术和信号-Moffett数据库的噪声比提高了15.71 dB,HYDICE数据库的噪声比提高了16.26 dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号