首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Spline-Like Wavelet Filterbanks for Multiresolution Analysis of Graph-Structured Data
【24h】

Spline-Like Wavelet Filterbanks for Multiresolution Analysis of Graph-Structured Data

机译:样条样小波滤波器组,用于图结构数据的多分辨率分析

获取原文
获取原文并翻译 | 示例

摘要

Multiresolution analysis is important for understanding , which represent graph-structured data. Wavelet filterbanks permit multiscale analysis and processing of graph signals—particularly, useful for harvesting large-scale data. Inspired by first-order spline wavelets in classical signal processing, we introduce two-channel (low-pass and high-pass) wavelet filterbanks for graph signals. This class of filterbanks boasts several useful properties, such as critical sampling, perfect reconstruction, and graph invariance. We consider an application in graph semisupervised learning and propose a wavelet-regularized semisupervised learning algorithm that is competitive for certain synthetic and real-world data.
机译:多分辨率分析对于理解表示图结构数据非常重要。小波滤波器组允许对图形信号进行多尺度分析和处理,特别是对于收集大规模数据很有用。受经典信号处理中一阶样条小波的启发,我们为图形信号引入了两通道(低通和高通)小波滤波器组。此类滤波器库具有几个有用的属性,例如关键采样,完美重构和图形不变性。我们考虑了在图半监督学习中的应用,并提出了一种小波正则化的半监督学习算法,该算法对于某些合成数据和真实数据具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号