首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Theoretical Analysis of the Measurement Transportation Algorithm to Fuse Delayed Data in Distributed Sensor Networks
【24h】

Theoretical Analysis of the Measurement Transportation Algorithm to Fuse Delayed Data in Distributed Sensor Networks

机译:分布式传感器网络中融合时延数据的测量传输算法的理论分析

获取原文
获取原文并翻译 | 示例

摘要

Distributed sensor networks are capable of robust dynamic system estimation. The shared information in the network can prevent significant degradation or the interruption of the estimation process when a particular network node fails. However, the estimation accuracy can be severely degraded if delayed information is navely fused. The classical algorithm to fuse delayed measurements in a distributed network is the reiterated Kalman filter (RKF), which provides the optimal estimate in linear and Gaussian systems. Nevertheless, this algorithm imposes a huge computational burden and requires considerable memory when the delay is large, thus precluding the use of RKF in embedded systems that lack the needed computational resources. Previously, we proposed a suboptimal algorithm called measurement transportation (MT) that greatly reduces both the memory requirement and computational burden and delivers accuracy comparable to that of the RKF in a simulated UAV network. However, MT was only tested with numerical simulations. Here, we extend the previous investigation with the detailed analysis of MT regarding its accuracy, memory necessity, and computational burden. Cases are shown when the analysis predicts that the accuracy delivered by MT is comparable to that of the RKF and the theoretical results are then validated with a simulated distributed sensor network.
机译:分布式传感器网络能够进行可靠的动态系统估计。当特定网络节点发生故障时,网络中的共享信息可以防止严重降级或估计过程的中断。但是,如果天真地融合了延迟信息,则估计精度可能会严重下降。在分布式网络中融合延迟测量的经典算法是迭代卡尔曼滤波器(RKF),它可以在线性和高斯系统中提供最佳估计。然而,该算法带来了巨大的计算负担,并且当延迟较大时需要相当大的内存,从而排除了在缺乏所需计算资源的嵌入式系统中使用RKF。以前,我们提出了一种称为测量传输(MT)的次优算法,该算法可大大减少内存需求和计算负担,并提供与模拟UAV网络中的RKF相当的精度。但是,MT仅通过数值模拟进行了测试。在这里,我们通过对MT的准确性,内存必要性和计算负担的详细分析来扩展先前的研究。当分析预测MT的精度与RKF的精度可比时,然后通过仿真的分布式传感器网络对理论结果进行验证,就会显示出一些案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号