首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Privacy-Preserving Average Consensus: Privacy Analysis and Algorithm Design
【24h】

Privacy-Preserving Average Consensus: Privacy Analysis and Algorithm Design

机译:保持隐私的平均共识:隐私分析和算法设计

获取原文
获取原文并翻译 | 示例

摘要

Privacy-preserving average consensus aims to guarantee the privacy of initial states and asymptotic consensus on the exact average of the initial values. In this paper, it is achieved by adding variance-decaying and zero-sum random noises to the consensus process. However, there is lack of theoretical analysis to quantify the degree of the data privacy protection. In this paper, we introduce the maximum disclosure probability that other nodes can infer one node's initial state within a given small interval to quantify the data privacy. We utilize a novel privacy definition, named (alpha, beta)-data-privacy, to depict the relationship between the maximum disclosure probability and the estimation accuracy. Then, we prove that the general privacy-preserving average consensus provides (alpha, beta)-data-privacy, and obtain the closed-form expression of the relationship between alpha and beta given the noise distribution. We reveal that the added noise with a uniform distribution is optimal in terms of achieving the highest (alpha, beta)-data-privacy. We also prove that under what condition, the data-privacy will he compromised. Finally, an optimal privacy-preserving average consensus algorithm is proposed to achieve the highest (alpha, beta)-data-privacy. Simulations verify the analytical results.
机译:保留隐私的平均共识旨在保证初始状态的隐私,并保证初始值的确切平均值上的渐近共识。在本文中,它是通过在共识过程中加入方差衰减和零和随机噪声来实现的。但是,缺乏用于量化数据隐私保护程度的理论分析。在本文中,我们介绍了最大披露概率,即其他节点可以在给定的小间隔内推断一个节点的初始状态以量化数据隐私。我们利用一种新颖的隐私定义,即(alpha,beta)-data-privacy,来描述最大披露概率与估计准确性之间的关系。然后,我们证明了一般的隐私保护平均共识可提供(alpha,beta)-数据隐私,并在给定噪声分布的情况下获得alpha和beta之间关系的封闭形式。我们揭示,在实现最高(alpha,beta)数据隐私方面,具有均匀分布的附加噪声是最佳的。我们还证明,在什么条件下,他的数据隐私将受到损害。最后,提出了一种最佳的隐私保护平均共识算法,以实现最高的(alpha,beta)数据隐私。仿真验证了分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号