首页> 外文期刊>Signal, Image and Video Processing >Drm: Dynamic Region Matching For Image Retrieval Using Probabilistic Fuzzy Matching And Boosting Feature Selection
【24h】

Drm: Dynamic Region Matching For Image Retrieval Using Probabilistic Fuzzy Matching And Boosting Feature Selection

机译:Drm:使用概率模糊匹配和Boosting特征选择进行图像检索的动态区域匹配

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the semantic gap in content-based image retrieval from two aspects: (1) irrelevant visual contents (e.g. background) scatter the mapping from image to human perception; (2) unsupervised feature extraction and similarity ranking method can not accurately reveal users' image perception. This paper proposes a novel region-based retrieval framework-dynamic region matching (DRM) to bridge the semantic gap. (1) To address the first issue, a probabilistic fuzzy region matching algorithm is adopted to retrieve and match images precisely at object level, which copes with the problem of inaccurate segmentation. (2) To address the second issue, a "FeatureBoost" algorithm is proposed to construct an effective "eigen" feature set in relevance feedback (RF) process. And the significance of each region is dynamically updated in RF learning to automatically capture users' region of interest (ROI). (3) User's retrieval purpose is predicted using a novel log-learning algorithm, which predicts users' retrieval target in the feature space using the accumulated user operations. Extensive experiments have been conducted on Corel image database with over 10,000 images. The promising experimental results reveal the effectiveness of our scheme in bridging the semantic gap.
机译:本文从两个方面考虑了基于内容的图像检索中的语义鸿沟:(1)无关的视觉内容(例如背景)分散了从图像到人类感知的映射; (2)无监督的特征提取和相似度排序方法不能准确揭示用户的图像感知能力。本文提出了一种新颖的基于区域的检索框架-动态区域匹配(DRM)来弥合语义鸿沟。 (1)针对第一个问题,采用概率模糊区域匹配算法在目标水平上精确地检索和匹配图像,解决了分割不准确的问题。 (2)为解决第二个问题,提出了一种“ FeatureBoost”算法来构造相关反馈(RF)过程中的有效“特征”特征集。并且在RF学习中动态更新每个区域的重要性,以自动捕获用户的关注区域(ROI)。 (3)使用新颖的日志学习算法预测用户的检索目的,该算法使用累积的用户操作在特征空间中预测用户的检索目标。在Corel图像数据库上进行了超过10,000张图像的广泛实验。有希望的实验结果表明我们的方案在弥合语义鸿沟方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号