首页> 外文期刊>Signal, Image and Video Processing >Content-based network resource allocation for real time remote laboratory applications - Springer
【24h】

Content-based network resource allocation for real time remote laboratory applications - Springer

机译:用于实时远程实验室应用的基于内容的网络资源分配-Springer

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a practical solution to make remote laboratories a realizable dream. A remote laboratory is an online laboratory where students can get first-hand experience of engineering labs via Internet. Video transmission can provide hands on experience to the user but the transmission channel or networks typically have variable and low bandwidth that poses a tough constraint for such implementation. This work presents a practical solution to such problems by adaptively transmitting the best available quality of laboratory videos to the user depending on network bandwidth. The concept behind our work is that not all objects or frames of the video have equal importance, and thus bandwidth reduction can be accomplished by intelligently transmitting important parts at relatively higher resolution. A localized Time adaptive mean of Gaussian (L-TAMOG) approach is used to search for moving objects which are then allocated network resources dynamically according to the varying network bandwidth variations. Adaptive motion compensated wavelet-based encoding is used to achieve scalability and high compression. The proposed system tracks the network bandwidth and delivers optimally the most important contents of video to the student. Experimental results over several remote laboratory sequences show the efficiency of the proposed framework.
机译:本文提出了使远程实验室成为可实现梦想的实用解决方案。远程实验室是在线实验室,学生可以通过Internet获得有关工程实验室的第一手经验。视频传输可以为用户提供动手体验,但是传输通道或网络通常具有可变的低带宽,这对这种实现方式构成了严格的约束。通过根据网络带宽向用户自适应地传输最佳质量的实验室视频,这项工作为此类问题提供了一种实用的解决方案。我们工作背后的概念是,并非视频的所有对象或帧都具有同等的重要性,因此可以通过以相对较高的分辨率智能传输重要部分来实现带宽减少。使用局部高斯时间自适应均值(L-TAMOG)方法搜索运动对象,然后根据变化的网络带宽变化动态地分配网络资源。自适应运动补偿基于小波的编码用于实现可伸缩性和高压缩率。拟议的系统跟踪网络带宽,并以最佳方式向学生提供视频的最重要内容。在多个远程实验室序列上的实验结果表明了所提出框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号