首页> 外文期刊>Signal, Image and Video Processing >An approach to divide pre-detected Devanagari words from the scene images into characters - Springer
【24h】

An approach to divide pre-detected Devanagari words from the scene images into characters - Springer

机译:将场景图像中预先检测的梵文单词分解为字符的方法-Springer

获取原文
获取原文并翻译 | 示例

摘要

A methodology to segment the Devanagari words, extracted from the scene images, into characters is presented. Scene images include street signs, shop names, product advertisements, posters on streets, etc. Such words are prone to multiple sources of noise and these make the segmentation very challenging. The problem gets more complicated while developing the text recognition methodologies for different scripts because there is no general solution to this problem and recognizing text in some scripts can be tougher than in others. An indigenous database is created for this purpose. It consists of 130 samples, manually extracted from 200 natural scene images. The results obtained by applying the proposed techniques are encouraging. The average performance is found to be 55.77 %. The execution time for a typical word of size 1169 × 353 is found to be 4.76 s. The database and the results can serve as baseline for the future researchers.
机译:提出了一种将从场景图像中提取出的梵文单词分割为字符的方法。场景图像包括路牌,商店名称,产品广告,街道上的海报等。此类单词容易产生多种噪声,这使分割非常具有挑战性。在开发针对不同脚本的文本识别方法时,该问题变得更加复杂,因为没有通用的解决方案,并且在某些脚本中识别文本可能比在其他脚本中更难识别。为此创建了一个本地数据库。它包含130个样本,是从200个自然场景图像中手动提取的。通过应用提出的技术获得的结果令人鼓舞。发现平均性能为55.77%。发现大小为1169×353的典型字的执行时间为4.76 s。数据库和结果可以作为未来研究人员的基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号