首页> 外文期刊>Signal, Image and Video Processing >Automatic liver and lesion segmentation: a primary step in diagnosis of liver diseases - Springer
【24h】

Automatic liver and lesion segmentation: a primary step in diagnosis of liver diseases - Springer

机译:自动肝脏和病变分割:诊断肝脏疾病的第一步-Springer

获取原文
获取原文并翻译 | 示例

摘要

Computed Tomography (CT) images are widely used for diagnosis of liver diseases and volume measurement for liver surgery and transplantation. Segmentation of liver and lesion is regarded as a major primary step in computer-aided diagnosis of liver diseases. Lesion alone cannot be segmented automatically from the abdominal CT image since there are tissues external to the liver with similar intensity to the lesions. Therefore, it is necessary to segment the liver first so that lesion can then be segmented accurately from it. In this paper, an approach for automatic and effective segmentation of liver and lesion from CT images needed for computer-aided diagnosis of liver is proposed. The method uses confidence connected region growing facilitated by preprocessing and postprocessing functions for automatic segmentation of liver and Alternative Fuzzy C-Means clustering for lesion segmentation. The algorithm is quantitatively evaluated by comparing automatic segmentation results to the manual segmentation results based on volume measurement error, figure of merit, spatial overlap, false positive error, false negative error, and visual overlap.
机译:计算机断层扫描(CT)图像被广泛用于肝病的诊断以及肝脏手术和移植的体积测量。肝脏和病变的分割被认为是计算机辅助诊断肝脏疾病的主要主要步骤。由于肝脏外部存在强度与病变相似的组织,因此无法单独从腹部CT图像自动分割病变。因此,有必要首先分割肝脏,以便可以从中准确分割病变。本文提出了一种从计算机辅助诊断肝脏所需的CT图像中自动有效地分割肝脏和病变的方法。该方法使用通过预处理和后处理功能促进的置信连接区域增长来自动分割肝脏,并使用可选的模糊C均值聚类进行病变分割。通过将自动分割结果与手动分割结果进行比较,对算法进行定量评估,基于体积测量误差,品质因数,空间重叠,假正误差,假负误差和视觉重叠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号