首页> 外文期刊>Services Computing, IEEE Transactions on >Generalized Nash Equilibria for the Service Provisioning Problem in Cloud Systems
【24h】

Generalized Nash Equilibria for the Service Provisioning Problem in Cloud Systems

机译:云系统中服务提供问题的广义Nash均衡

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the evolution and the widespread adoption of virtualization, service-oriented architectures, autonomic, and utility computing have converged letting a new paradigm to emerge: cloud computing. Clouds allow the on-demand delivering of software, hardware, and data as services. Currently, the cloud offer is becoming wider day by day because all the major IT companies and service providers, like Microsoft, Google, Amazon, HP, IBM, and VMWare, have started providing solutions involving this new technological paradigm. As cloud-based services are more numerous and dynamic, the development of efficient service provisioning policies becomes increasingly challenging. In this paper, we take the perspective of Software as a Service (SaaS) providers that host their applications at an Infrastructure as a Service (IaaS) provider. Each SaaS needs to comply with quality-of-service requirements, specified in service-level agreement (SLA) contracts with the end users, which determine the revenues and penalties on the basis of the achieved performance level. SaaS providers want to maximize their revenues from SLAs, while minimizing the cost of use of resources supplied by the IaaS provider. Moreover, SaaS providers compete and bid for the use of infrastructural resources. On the other hand, the IaaS wants to maximize the revenues obtained providing virtualized resources. In this paper, we model the service provisioning problem as a generalized Nash game and we show the existence of equilibria for such game. Moreover, we propose two solution methods based on the best-reply dynamics, and we prove their convergence in a finite number of iterations to a generalized Nash equilibrium. In particular, we develop an efficient distributed algorithm for the runtime allocation of IaaS resources among competing SaaS providers. We demonstrate the effectiveness of our approach by simulation and performing tests on a real prototype environment deployed on Amazon EC2. Results show tha- , compared to other state-of-the-art solutions, our model can improve the efficiency of the cloud system evaluated in terms of Price of Anarchy by 50-70 percent.
机译:近年来,虚拟化的发展和广泛采用,面向服务的体系结构,自主性和实用程序计算已经融合在一起,从而出现了一个新的范例:云计算。云使您可以按需交付软件,硬件和数据即服务。当前,由于所有主要的IT公司和服务提供商(例如Microsoft,Google,Amazon,HP,IBM和VMWare)已经开始提供涉及此新技术范例的解决方案,因此云服务的范围正在日益扩大。随着基于云的服务越来越多且越来越动态,有效的服务提供策略的开发变得越来越具有挑战性。在本文中,我们从软件即服务(SaaS)提供程序的角度出发,这些提供程序将其应用程序托管在基础架构即服务(IaaS)提供程序中。每个SaaS都必须遵守与最终用户签订的服务水平协议(SLA)合同中规定的服务质量要求,这些要求将根据已达到的性能水平确定收入和罚款。 SaaS提供商希望最大程度地提高SLA的收入,同时最大程度地降低IaaS提供商提供的资源使用成本。此外,SaaS提供商竞争并竞标使用基础设施资源。另一方面,IaaS希望通过提供虚拟化资源来获得最大的收益。在本文中,我们将服务供应问题建模为广义Nash博弈,并证明这种博弈存在均衡。此外,我们提出了两种基于最佳回复动力学的解决方法,并证明了它们在有限次数的迭代中收敛到广义Nash平衡。特别是,我们为竞争SaaS提供程序之间的IaaS资源的运行时分配开发了一种高效的分布式算法。我们通过在Amazon EC2上部署的真实原型环境上进行仿真和测试来证明我们的方法的有效性。结果表明,与其他最新解决方案相比,我们的模型可以将按无政府状态价格评估的云系统的效率提高50%至70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号