首页> 外文期刊>Services Computing, IEEE Transactions on >iGeoRec: A Personalized and Efficient Geographical Location Recommendation Framework
【24h】

iGeoRec: A Personalized and Efficient Geographical Location Recommendation Framework

机译:iGeoRec:个性化且高效的地理位置推荐框架

获取原文
获取原文并翻译 | 示例

摘要

Geographical influence has been intensively exploited for location recommendations in location-based social networks (LBSNs) due to the fact that geographical proximity significantly affects users’ check-in behaviors. However, current studies only model the geographical influence on all users’ check-in behaviors as a way. We argue that the geographical influence on users’ check-in behaviors should be . In this paper, we propose a personalized and efficient geographical location recommendation framework called iGeoRec to take full advantage of the geographical influence on location recommendations. In iGeoRec, there are mainly two challenges: (1) personalizing the geographical influence to accurately predict the probability of a user visiting a new location, and (2) efficiently computing the probability of each user to all new locations. To address these two challenges, (1) we propose a probabilistic approach to personalize the geographical influence as a personal distribution for each user and predict the probability of a user visiting any new location using her personal distribution. Furthermore, (2) we develop an efficient approximation method to compute the probability of any user to all new locations; the proposed method reduces the computational complexity of the exact computation method from to (where is the total number of locations in an LBSN and is the number of check-in locations of a user). Finally, we conduct extensive experiments to evaluate the recommendation and of iGeoRec using two large-scale real data sets collected from the two of the most popular LBSNs: Foursquare and Gowalla. Experimental results show that iGeoRec provides significantly superior performance compared to other state-of-the-art geographical recommendation techniques.
机译:由于地理位置接近性会显着影响用户的签到行为,因此在基于位置的社交网络(LBSN)中,人们广泛地利用地理影响力来推荐位置。但是,当前的研究仅以一种方式来模拟地理区域对所有用户的签到行为的影响。我们认为对用户签到行为的地理影响应为。在本文中,我们提出了一个名为iGeoRec的个性化且高效的地理位置推荐框架,以充分利用地理位置对地理位置推荐的影响。在iGeoRec中,主要存在两个挑战:(1)个性化地理影响以准确预测用户访问新位置的概率,以及(2)有效地计算每个用户进入所有新位置的概率。为了解决这两个挑战,(1)我们提出一种概率方法,将地理影响个性化为每个用户的个人分布,并使用其个人分布预测用户访问任何新位置的可能性。此外,(2)我们开发了一种有效的近似方法来计算任何用户进入所有新位置的概率;所提出的方法将精确计算方法的计算复杂度从降低到(其中LBSN中的位置总数和用户的签到位置数)。最后,我们使用从两个最受欢迎的LBSN(Foursquare和Gowalla)中收集的两个大规模真实数据集,进行了广泛的实验,以评估iGeoRec的推荐和评价。实验结果表明,与其他最新的地理推荐技术相比,iGeoRec提供了显着优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号