首页> 外文期刊>Services Computing, IEEE Transactions on >Unified Collaborative and Content-Based Web Service Recommendation
【24h】

Unified Collaborative and Content-Based Web Service Recommendation

机译:统一协作和基于内容的Web服务建议

获取原文
获取原文并翻译 | 示例

摘要

The last decade has witnessed a tremendous growth of web services as a major technology for sharing data, computing resources, and programs on the web. With increasing adoption and presence of web services, designing novel approaches for efficient and effective web service recommendation has become of paramount importance. Most existing web service discovery and recommendation approaches focus on either perishing UDDI registries, or keyword-dominant web service search engines, which possess many limitations such as poor recommendation performance and heavy dependence on correct and complex queries from users. It would be desirable for a system to recommend web services that align with users’ interests without requiring the users to explicitly specify queries. Recent research efforts on web service recommendation center on two prominent approaches: and . Unfortunately, both approaches have some drawbacks, which restrict their applicability in web service recommendation. In this paper, we propose a novel approach that unifies collaborative filtering and content-based recommendations. In particular, our approach considers simultaneously both rating data (e.g., QoS) and semantic content data (e.g., functionalities) of web services using a probabilistic generative model. In our model, unobservable user preferences are represented by introducing a set of latent variables, which can be statistically estimated. To verify the proposed approach, we conduct experiments using 3,693 real-world web services. The experimental results show that our approach outperforms the state-of-the-art methods on recommendation performance.
机译:过去十年见证了Web服务的巨大发展,它是一种用于在Web上共享数据,计算资源和程序的主要技术。随着Web服务的采用和存在的增加,为有效和有效的Web服务推荐设计新颖的方法变得至关重要。现有的大多数Web服务发现和推荐方法都集中在易腐的UDDI注册中心或以关键字为主的Web服务搜索引擎上,这些引擎具有许多局限性,例如较差的推荐性能以及严重依赖用户正确和复杂的查询。对于这样的系统,希望推荐与用户的兴趣相一致的Web服务,而不要求用户明确指定查询。关于Web服务推荐的最新研究工作集中在两种主要方法上:和。不幸的是,这两种方法都有一些缺点,这限制了它们在Web服务推荐中的适用性。在本文中,我们提出了一种新颖的方法,该方法将协作过滤和基于内容的建议进行了统一。具体地说,我们的方法使用概率生成模型同时考虑Web服务的评级数据(例如QoS)和语义内容数据(例如功能)。在我们的模型中,通过引入一组潜在变量来表示无法观察到的用户偏好,这些变量可以进行统计估计。为了验证所提出的方法,我们使用3,693个真实世界的Web服务进行了实验。实验结果表明,我们的方法在推荐性能方面优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号