首页> 外文期刊>Services Computing, IEEE Transactions on >Assessing and Comparing Vulnerability Detection Tools for Web Services: Benchmarking Approach and Examples
【24h】

Assessing and Comparing Vulnerability Detection Tools for Web Services: Benchmarking Approach and Examples

机译:评估和比较Web服务的漏洞检测工具:基准化方法和示例

获取原文
获取原文并翻译 | 示例

摘要

Selecting a vulnerability detection tool is a key problem that is frequently faced by developers of security-critical web services. Research and practice shows that state-of-the-art tools present low effectiveness both in terms of vulnerability coverage and false positive rates. The main problem is that such tools are typically limited in the detection approaches implemented, and are designed for being applied in very concrete scenarios. Thus, using the wrong tool may lead to the deployment of services with undetected vulnerabilities. This paper proposes a benchmarking approach to assess and compare the effectiveness of vulnerability detection tools in web services environments. This approach was used to define two concrete benchmarks for SQL Injection vulnerability detection tools. The first is based on a predefined set of web services, and the second allows the benchmark user to specify the workload that best portrays the specific characteristics of his environment. The two benchmarks are used to assess and compare several widely used tools, including four penetration testers, three static code analyzers, and one anomaly detector. Results show that the benchmarks accurately portray the effectiveness of vulnerability detection tools (in a relative manner) and suggest that the proposed benchmarking approach can be applied in the field.
机译:选择漏洞检测工具是安全性至关重要的Web服务开发人员经常面临的关键问题。研究和实践表明,就漏洞覆盖率和误报率而言,最先进的工具的有效性较低。主要问题在于,此类工具通常受限于所实施的检测方法,并且被设计用于非常具体的场景。因此,使用错误的工具可能会导致部署具有未检测到的漏洞的服务。本文提出了一种基准测试方法,用于评估和比较Web服务环境中漏洞检测工具的有效性。该方法用于为SQL Injection漏洞检测工具定义两个具体的基准。第一个基于预定义的Web服务集,第二个允许基准用户指定最能体现其环境特定特征的工作负载。这两个基准用于评估和比较几种广泛使用的工具,包括四个渗透测试仪,三个静态代码分析仪和一个异常检测器。结果表明,基准测试可以准确地(以相对方式)描述漏洞检测工具的有效性,并表明所建议的基准测试方法可以在现场应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号