首页> 外文期刊>Services Computing, IEEE Transactions on >Location-Aware and Personalized Collaborative Filtering for Web Service Recommendation
【24h】

Location-Aware and Personalized Collaborative Filtering for Web Service Recommendation

机译:Web服务推荐的位置感知和个性化协作过滤

获取原文
获取原文并翻译 | 示例

摘要

Collaborative Filtering (CF) is widely employed for making Web service recommendation. CF-based Web service recommendation aims to predict missing QoS (Quality-of-Service) values of Web services. Although several CF-based Web service QoS prediction methods have been proposed in recent years, the performance still needs significant improvement. First, existing QoS prediction methods seldom consider personalized influence of users and services when measuring the similarity between users and between services. Second, Web service QoS factors, such as response time and throughput, usually depends on the locations of Web services and users. However, existing Web service QoS prediction methods seldom took this observation into consideration. In this paper, we propose a location-aware personalized CF method for Web service recommendation. The proposed method leverages both locations of users and Web services when selecting similar neighbors for the target user or service. The method also includes an enhanced similarity measurement for users and Web services, by taking into account the personalized influence of them. To evaluate the performance of our proposed method, we conduct a set of comprehensive experiments using a real-world Web service dataset. The experimental results indicate that our approach improves the QoS prediction accuracy and computational efficiency significantly, compared to previous CF-based methods.
机译:协作筛选(CF)被广泛用于提出Web服务推荐。基于CF的Web服务建议旨在预测Web服务缺少的QoS(服务质量)值。尽管近年来已经提出了几种基于CF的Web服务QoS预测方法,但是性能仍然需要显着提高。首先,当测量用户之间以及服务之间的相似性时,现有的QoS预测方法很少考虑用户和服务的个性化影响。其次,Web服务QoS因素(例如响应时间和吞吐量)通常取决于Web服务和用户的位置。但是,现有的Web服务QoS预测方法很少考虑此观察。在本文中,我们提出了一种用于Web服务推荐的位置感知的个性化CF方法。当为目标用户或服务选择相似的邻居时,建议的方法会同时利用用户和Web服务的位置。通过考虑用户和W​​eb服务的个性化影响,该方法还包括针对它们的增强的相似性度量。为了评估我们提出的方法的性能,我们使用真实的Web服务数据集进行了一组全面的实验。实验结果表明,与以前的基于CF的方法相比,我们的方法显着提高了QoS预测准确性和计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号