首页> 外文期刊>Services Computing, IEEE Transactions on >Localizing Runtime Anomalies in Service-Oriented Systems
【24h】

Localizing Runtime Anomalies in Service-Oriented Systems

机译:在面向服务的系统中本地化运行时异常

获取原文
获取原文并翻译 | 示例

摘要

In a distributed, dynamic and volatile operating environment, runtime anomalies occurring in service-oriented systems (SOSs) must be located and fixed in a timely manner in order to guarantee successful delivery of outcomes in response to user requests. Monitoring all component services constantly and inspecting the entire SOS upon a runtime anomaly are impractical due to excessive resource and time consumption required, especially in large-scale scenarios. We present a spectrum-based approach that goes through a five-phase process to quickly localize runtime anomalies occurring in SOSs based on end-to-end system delays. Upon runtime anomalies, our approach calculates the similarity coefficient for each basic component (BC) of the SOS to evaluate their suspiciousness of being faulty. Our approach also calculates the delay coefficients to evaluate each BC's contribution to the severity of the end-to-end system delays. Finally, the BCs are ranked by their similarity coefficient scores and delay coefficient scores to determine the order of them being inspected. Extensive experiments are conducted to evaluate the effectiveness and efficiency of the proposed approach. The results indicate that our approach significantly outperforms random inspection and the popular Ochiai-based inspection in localizing single and multiple runtime anomalies effectively. Thus, our approach can help save time and effort for localizing runtime anomalies occuring in SOSs.
机译:在分布式,动态和易变的操作环境中,必须及时定位和修复面向服务的系统(SOS)中发生的运行时异常,以确保响应用户请求成功交付结果。由于需要过多的资源和时间消耗,尤其是在大型方案中,不断监视所有组件服务并在运行时异常时检查整个SOS是不切实际的。我们提出了一种基于频谱的方法,该方法通过五个阶段的过程来基于端到端的系统延迟快速定位SOS中发生的运行时异常。在运行时出现异常时,我们的方法将为SOS的每个基本组件(BC)计算相似系数,以评估它们是否有故障。我们的方法还计算了延迟系数,以评估每个BC对端到端系统延迟严重性的影响。最后,根据BC的相似系数评分和延迟系数评分对BC进行排名,以确定对其进行检查的顺序。进行了广泛的实验,以评估该方法的有效性和效率。结果表明,在有效地定位单个和多个运行时异常方面,我们的方法明显优于随机检查和基于Ochiai的流行检查。因此,我们的方法可以帮助节省时间和精力来定位SOS中发生的运行时异常。

著录项

  • 来源
    《Services Computing, IEEE Transactions on》 |2017年第1期|94-106|共13页
  • 作者单位

    School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia;

    State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China;

    School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia;

    School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia;

    School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China;

    School of Computer Science and Technology, Anhui University, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Runtime; Delays; Inspection; Monitoring; Quality of service; Streaming media; Engines;

    机译:运行时;延迟;检查;监视;服务质量;流媒体;引擎;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号