首页> 外文期刊>Services Computing, IEEE Transactions on >A Genetic Algorithm Based Data Replica Placement Strategy for Scientific Applications in Clouds
【24h】

A Genetic Algorithm Based Data Replica Placement Strategy for Scientific Applications in Clouds

机译:基于遗传算法的云科学应用数据副本放置策略

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is a promising distributed computing platform for big data applications, e.g., scientific applications, since excessive resources can be obtained from cloud services for processing and storing both existing and generated application datasets. However, when tasks process big data stored in distributed data centers, the inevitable data movements will cause huge bandwidth cost and execution delay. In this paper, we construct a tripartite graph based model to formulate the data replica placement problem and propose a genetic algorithm based data replica placement strategy for scientific applications to reduce data transmissions in cloud. Our approach can reduce 1) the size of moved data, 2) the time of data movement and 3) the number of movements. We conduct experiments to compare the proposed strategy with the random placement strategy used in Hadoop Distributed Files System (HDFS), which demonstrates that our strategy has better performance for scientific applications in clouds.
机译:云计算是用于大数据应用程序(例如科学应用程序)的有前途的分布式计算平台,因为可以从云服务获取过多的资源来处理和存储现有和生成的应用程序数据集。但是,当任务处理分布式数据中心中存储的大数据时,不可避免的数据移动将导致巨大的带宽成本和执行延迟。在本文中,我们构建了一个基于三方图的模型来表达数据副本的放置问题,并提出了一种基于遗传算法的数据副本放置策略,用于科学应用,以减少云中的数据传输。我们的方法可以减少1)移动数据的大小,2)数据移动的时间和3)移动的数量。我们进行了实验,以将提议的策略与Hadoop分布式文件系统(HDFS)中使用的随机放置策略进行比较,这表明我们的策略对于云中的科学应用具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号