首页> 外文期刊>Services Computing, IEEE Transactions on >Mining Deficiencies of Online Reputation Systems: Methodologies, Experiments and Implications
【24h】

Mining Deficiencies of Online Reputation Systems: Methodologies, Experiments and Implications

机译:在线声誉系统的挖掘缺陷:方法,实验和含义

获取原文
获取原文并翻译 | 示例

摘要

Online reputation systems serve as core building blocks in various Internet services such as E-commerce (e.g., eBay) and crowdsourcing (e.g., oDesk). The flaws and deficiencies of real-world online reputation systems have been reported extensively. Users who are frustrated about the system will eventually abandon such service. However, there is no systematic and formal studies which examine such deficiencies. This paper presents the first attempt, which develops a novel data analytical framework to uncover online reputation system deficiencies from data. We develop two novel measures to quantify the efficiency of online reputation systems: (1) ramp up time of a new service provider, (2) long term profit gains for a service provider. We present a new data analytical framework to evaluate these two measures from data. We show that inherent preferences or personal biases in expressing feedbacks (or ratings) cause the computational infeasibility in evaluating the ramp up time and the long term profit gains from data. We develop two computationally efficient randomized algorithms with theoretical performance guarantees to address this computational challenge. We apply our methodology to analyze real-life datasets (from eBay, Google Helpouts, Amazon and TripAdvisor). We extensively validate our model and we uncover the deficiencies of online reputation systems. Our experimental results uncovers insights on why Google Helpouts was eventually shut down in April 2015 and why eBay is losing some sellers heavily.
机译:在线声誉系统是各种互联网服务中的核心构建块,例如电子商务(例如,eBay)和众包(例如,odesk)。已经广泛地报告了现实世界在线声誉系统的缺陷和缺陷。对系统感到沮丧的用户最终将放弃这种服务。但是,没有系统和正式的研究,研究了这种缺陷。本文提出了第一次尝试,该尝试开发了一种新的数据分析框架,以发现来自数据的在线声誉系统缺陷。我们开发了两项新的措施来量化在线声誉系统的效率:(1)新服务提供商的加速时间,(2)服务提供商的长期利润收益。我们提出了一种新的数据分析框架来评估这些两种措施。我们表明,在表达反馈(或额定值)中的固有偏好或个人偏差导致计算增值时间和从数据中的长期利润收益中的计算不可行性。我们开发了两个计算上有效的随机算法,具有理论性能保证,以解决这一计算挑战。我们应用我们的方法来分析现实生活数据集(来自eBay,Google Helpouts,Amazon和TripAdvisor)。我们广泛验证我们的模型,我们发现在线声誉系统的缺陷。我们的实验结果揭示了对谷歌帮助的最终在2015年4月最终关闭的洞察力,为什么eBay正在损失一些卖家。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号